state and prove pythagoras Theorem
Answers
Answer:
ANSWER HAVE BEEN ATTACHED
MARK ME AS BRAINLIEST .........
▪▪▪ANSWER▪▪▪
History
The theorem is named after a greek Mathematician called Pythagoras.
Pythagoras Theorem Formula
Consider the triangle given above:
Where “a” is the perpendicular side,
“b” is the base,
“c” is the hypotenuse side.
According to the definition, the Pythagoras Theorem formula is given as:
Hypotenuse2 = Perpendicular2 + Base2
c2 = a2 + b2
The side opposite to the right angle (90°) is the longest side (known as Hypotenuse) because the side opposite to the greatest angle is the longest.
Consider three squares of sides a, b, c mounted on the three sides of a triangle having the same sides as shown.
By Pythagoras Theorem –
Area of square A + Area of square B = Area of square C
Example
The examples of theorem based on the statement given for right triangles is given below:
Consider a right triangle, given below:Find the value of x.
X is the side opposite to right angle, hence it is a hypotenuse.
Now, by the theorem we know;
Hypotenuse2 = Base2 + Perpendicular2
x2 = 82 + 62
x2 = 64+36 = 100
x = √100 = 10
Therefore, we found the value of hypotenuse here.Given: A right-angled triangle ABC, right-angled at B.
To Prove- AC2 = AB2 + BC2
Construction: Draw a perpendicular BD meeting AC at D.
Proof:
We know, △ADB ~ △ABC
Therefore, ADAB=ABAC (corresponding sides of similar triangles)
Or, AB2 = AD × AC ……………………………..……..(1)
Also, △BDC ~△ABC
Therefore, CDBC=BCAC (corresponding sides of similar triangles)
Or, BC2= CD × AC ……………………………………..(2)
Adding the equations (1) and (2) we get,
AB2 + BC2 = AD × AC + CD × AC
AB2 + BC2 = AC (AD + CD)
Since, AD + CD = AC
Therefore, AC2 = AB2 + BC2
Hence, the Pythagorean theorem is proved.
Note: Pythagorean theorem is only applicable to Right-Angled triangle.