state and prove Thales theorem or Basic proportionality theorem
Answers
Answered by
6
Given
ΔABC in which DE || BC and DE intersect AB at D and AC at E
To Prove
AD/DB = AE/EC
Construction
join BE, CD and Draw EF⊥AB , DN⊥AC
Proof
ar(ΔADE)/ar(ΔBDE) = (1/2×AD × EF)/(1/2×BD×EF) = AD/BD (i)
and
ar(ΔADE)/ar(ΔBDE) = (1/2×AE×DN)/(1/2×EC×DN) = AE/EC (ii)
But ΔBDE and ΔCDE are on the same base DE ans between the same parallels DE and BC
ar(ΔBDE) = ar(ΔCDE) (iii)
ar(ΔADE)/ar(ΔBDE) = ar(ΔADE)/ar(ΔCDE) Using (iii) (iv)
Hence
AD/DB = AE/EC
Attachments:
Answered by
9
Given:
DE || BC
Construction :
Draw EL ⊥ AB and ,⊥ AC and Join B to E and D to C
To Prove:
Proof:
We know that
Again,
ar (∆BDE) = ar(∆DEC). . . . . (iii) ( both Triangles are on the same base and between same parallels
From eq (ii) and (iii)
From eq (i) and (iv)
Hence proved
Attachments:
Similar questions
Math,
1 month ago
Hindi,
1 month ago
Computer Science,
1 month ago
Geography,
3 months ago
English,
10 months ago
Environmental Sciences,
10 months ago