Math, asked by bishalbhowmick123, 1 year ago

State and prove the basic proportionality theorem?

Answers

Answered by jungkookiebangtan
7

!! HEY MATE HERE IS YOUR ANSWER!!

Basic Proportionality Theorem was first stated by Thales, a Greek mathematician. ... Basic Proportionality Theorem (can be abbreviated as BPT) states that, if a line is parallel to a side of a triangle which intersects the other sides into two distinct points, then the line divides those sides in proportion.

!!HOPE IT HELPED YOU!!


Zunairah23: Wat were u doing
Zunairah23: do u see sex videos
Zunairah23: or pron videos
Zunairah23: Mmmmm
Zunairah23: n.a.
Zunairah23: no
Answered by nilesh102
5

hi mate,

PROOF OF BPT

Given: In ΔABC, DE is parallel to BC

Line DE intersects sides AB and AC in points D and E respectively.

To Prove:

AD AE

----- = -----

DB AC

Construction: Draw EF ⟂ AD and DG⟂ AE and join the segments BE and CD.

Proof:

Area of Triangle= ½ × base × height

In ΔADE and ΔBDE,

Ar(ADE) ½ ×AD×EF AD

----------- = ------------------ = ------ .....(1)

Ar(DBE) ½ ×DB×EF DB

In ΔADE and ΔCDE,

Ar(ADE) ½×AE×DG AE

------------ = --------------- = ------ ........(2)

Ar(ECD) ½×EC×DG EC

Note that ΔDBE and ΔECD have a common base DE and lie between the same parallels DE and BC. Also, we know that triangles having the same base and lying between the same parallels are equal in area.

So, we can say that

Ar(ΔDBE)=Ar(ΔECD)

Therefore,

A(ΔADE) A(ΔADE)

------------- = ---------------

A(ΔBDE) A(ΔCDE)

Therefore,

AD AE

----- = -----

DB AC

Hence Proved.

Attachments:
Similar questions