Math, asked by rajeshsharma24112004, 7 months ago

-State Basic Proportionality Theorem and prove it​

Answers

Answered by Anonymous
6

Answer:

Basic Proportionality Theorem (BPT) If a side is parallel to one side of a triangle and it intersects the other two points in two distinct points, the it divides the other two sides in proportion

Answered by srinidhisanka
0

Answer:

Basic Proportionality Theorem states that, if a line is parallel to a side of a triangle which intersects the other sides into two distinct points, then the line divides those sides of the triangle in proportion.

⇒ Given: In triangle ABC, DE ║ BC

⇒ To prove: \frac{AD}{DB} = \frac{AE}{EC}

⇒ Construction: Join BE and CD and draw DG ⊥ AC and EF ⊥ AB.

⇒ Proof:

   ⇒ Area(triangle ADE) = \frac{1}{2} * base * height

                                        = \frac{1}{2}  * AD * EF ---------------------(i)

   ⇒ Area(triangle BDE) = \frac{1}{2} * base * height

                                       = \frac{1}{2} * DB * EF -----------------------(ii)

   By Dividing (i) & (ii),

   ⇒ \frac{Area(ADE)}{Area(BDE)} = \frac{1/2*AD*EF}{1/2*DB*EF}

   ⇒ \frac{Ar(ADE)}{Ar(BDE)} = \frac{AD}{DB} ------------------------ (a)

   ⇒ Area(triangle ADE) = \frac{1}{2}  * AE * DM ---------------------(iii)

   ⇒ Area(triangle DEC) = \frac{1}{2}  * EC * DM ---------------------(iv)

   By Dividing (iii) & (iv),

   ⇒ \frac{Area(ADE)}{Area(DEC)} = \frac{1/2*AE*DM}{1/2*EC*DM}

   ⇒  \frac{Ar(ADE)}{Ar(DEC)} = \frac{AE}{EC} ------------------------ (b)

Now,

Triangle BDE & Triangle DEC are on same base DE and between the same parallel lines BC and DE

∴ Ar(BDE) = Ar(DEC)

Hence,

\frac{Area(ADE)}{Area(BDE)} = \frac{Area(ADE)}{Area(DEC)}

\frac{AD}{DB} = \frac{AE}{EC}       (from (a) and (b))

Hence Proved

HOPE IT HELPS YOU!!!  

Attachments:
Similar questions