Physics, asked by surajkr5470, 18 days ago

State boyle's law and charles law hence derive ideal gas equation class 11th

Answers

Answered by rashmimahapatra612
0

Answer:

or a gas, the relationship between volume and pressure (at constant mass and temperature) can be expressed mathematically as follows.

P ∝ (1/V)

Where P is the pressure exerted by the gas and V is the volume occupied by it. This proportionality can be converted into an equation by adding a constant, k.

P = k*(1/V) ⇒ PV = k

The pressure v/s volume curve for a fixed amount of gas kept at constant temperature is illustrated below.

Boyle’s law

It can be observed that a straight line is obtained when the pressure exerted by the gas (P) is taken on the Y-axis and the inverse of the volume occupied by the gas (1/V) is taken on the X-axis.

Formula and Derivation

As per Boyle’s law, any change in the volume occupied by a gas (at constant quantity and temperature) will result in a change in the pressure exerted by it. In other words, the product of the initial pressure and the initial volume of a gas is equal to the product of its final pressure and final volume (at constant temperature and number of moles). This law can be expressed mathematically as follows:

P1V1 = P2V2

Where,

P1 is the initial pressure exerted by the gas

V1 is the initial volume occupied by the gas

P2 is the final pressure exerted by the gas

V2 is the final volume occupied by the gas

This expression can be obtained from the pressure-volume relationship suggested by Boyle’s law. For a fixed amount of gas kept at a constant temperature, PV = k. Therefore,

P1V1 = k (initial pressure * initial volume)

P2V2 = k (final pressure * final volume)

∴ P1V1 = P2V2

This equation can be used to predict the increase in the pressure exerted by a gas on the walls of its container when the volume of its container is decreased (and its quantity and absolute temperature remain unchanged).

Similar questions