State parallelogram law of vector addition. Use the law to obtain an expression for the resultant of two vectors inclined to each other at an angle θ with each other.
Answers
Answer:
Hey mate !!!
Statement of Parallelogram Law
If two vectors acting simultaneously at a point can be represented both in magnitude and direction by the adjacent sides of a parallelogram drawn from a point, then the resultant vector is represented both in magnitude and direction by the diagonal of the parallelogram passing through that point.
Derivation of the law
Let P and Q be two vectors acting simultaneously at a point and represented both in magnitude and direction by two adjacent sides OA and OD of a parallelogram OABD as shown in figure.
Let θ be the angle between P and Q and R be the resultant vector. Then, according to parallelogram law of vector addition, diagonal OB represents the resultant of P and Q.
So, we have
R = P + Q
Now, expand A to C and draw BC perpendicular to OC.
From triangle OCB,
In triangle ABC,
Also,
Magnitude of resultant:
Substituting value of AC and BC in (i), we get
which is the magnitude of resultant.
Direction of resultant: Let ø be the angle made by resultant R with P. Then,
From triangle OBC,
which is the direction of resultant.
HOPE IT HELPs !!!