state the advantage of total internal reflection over regular reflection on the basis of optical fiber
Answers
Answer:
A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.
Consider what happens when a ray of light strikes the surface between two materials, such as is shown in Figure 1a. Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first, the ray bends away from the perpendicular. (Since n1 > n2, the angle of refraction is greater than the angle of incidence—that is, θ1 > θ2.) Now imagine what happens as the incident angle is increased. This causes θ2 to increase also. The largest the angle of refraction θ2 can be is 90º, as shown in Figure 1b.The critical angle θc for a combination of materials is defined to be the incident angle θ1 that produces an angle of refraction of 90º. That is, θc is the incident angle for which θ2 = 90º. If the incident angle θ1 is greater than the critical angle, as shown in Figure 1c, then all of the light is reflected back into medium 1, a condition called total internal reflection.
Hope it's helpful
Make me brainlist
Answer:
I don't know sorryyyyyyyyyyy