Math, asked by umangivyas2002, 4 months ago

state the condition for the quadratic equation ax2+ bx + c is equal to zero to have opposite roots​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\textsf{Equation is}\;\mathsf{ax^2+bx+c=0}

\textbf{To find:}

\textsf{The condition for the given quadratic equation}

\textsf{has opposite roots}

\textbf{Solution:}

\textsf{Let the roots of the given equation be}\;\mathsf{\alpha\;and\;-\alpha}

\mathsf{Then,}

\mathsf{Sum\;of\;the\;roots=\dfrac{-b}{a}}

\mathsf{\alpha+(-\alpha)=\dfrac{-b}{a}}

\mathsf{0=\dfrac{-b}{a}}

\implies\mathsf{-b=0}

\implies\boxed{\mathsf{b=0}}

\textsf{This is the required condition}

Answered by vijaysinh9483
1

Answer:

ax^2+c=0is the answer

for the condition of the quadratic equation

Similar questions