Physics, asked by poojagujja5877, 10 months ago

State the expression for moment of inertia of this ring about: 1)an axis passing through the centre and perpendicular to its glasses

Answers

Answered by BrainlyConqueror0901
6

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Mass \: of \: ring = m \\  \\ \tt:  \implies Radius \: of \: ring = r \\  \\ \red{\underline \bold{To \: Derive :}} \\  \tt:  \implies Moment \: of \: inertia \: of \: ring =?

• According to given question :

 \tt \circ \: Cutting \: an \: element \: of \: length \: dx \\  \tt  \:  \:  \: at \: circumference \: of \: ring \\  \\  \bold{As \: we \: know \: that } \\  \tt:  \implies Mass \: in \: dx \: length = dm \\  \\ \tt:  \implies dm =  \frac{m}{2\pi r} dx -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies I=( dm ){r}^{2}  \\  \\ \tt:  \implies i =  \frac{m}{2\pi r} dx \times  {r}^{2}  \\  \\ \tt:  \implies I=  \frac{mr}{2\pi} dx \\  \\ \tt:  \implies I =  \frac{mr}{2\pi} \int dx \\  \\ \tt:  \implies I=  \frac{mr}{2\pi}  \int \limits_{0}^{2\pi r} dx \\  \\ \tt:  \implies i =  \frac{mr}{2\pi}  \bigg[x \bigg]_{0} ^{2\pi r}  \\  \\ \tt:  \implies I=  \frac{mr}{2\pi}  [2\pi r - 0]\\  \\ \tt:  \implies I=  \frac{mr}{2\pi }  \times 2\pi r \\  \\  \green{\tt:  \implies I= m {r}^{2} } \\  \\    \green {\boxed {\huge{ \bold{Derived}}}}

Answered by Anonymous
4

Explanation:

\sf\Large\bold\purple{please\:refer\:the\: attachment}

_____________________

Attachments:
Similar questions