State the law of conservation of linear momentum
Answers
Answered by
8
First off momentum = mass x velocity. You can prove the conservation of momentum (i.e. that it stays the same unless a force acts upon a body) from Newton's laws.
Force = mass x acceleration
Acceleration is the change of velocity over time so:
Force = mass x ((velocity1 - velocity2) / time)
Or:
Force = ((mass x velocity1) - (mass x velocity2)) / time
Because mass x velocity is momentum, we can say:
Force = (momentum1 - momentum2) / time
Or:
Force x time = momentum1 - momentum2
Meaning a change in momentum is caused by force multiplied by time. If there is no force (or no time for it to be applied), the left hand side of the equation is zero, meaning momentum1 = momentum2 (and therefore there is no change in momentum).
Therefore, without a force being applied for a period of time, momentum is conserved.
Force = mass x acceleration
Acceleration is the change of velocity over time so:
Force = mass x ((velocity1 - velocity2) / time)
Or:
Force = ((mass x velocity1) - (mass x velocity2)) / time
Because mass x velocity is momentum, we can say:
Force = (momentum1 - momentum2) / time
Or:
Force x time = momentum1 - momentum2
Meaning a change in momentum is caused by force multiplied by time. If there is no force (or no time for it to be applied), the left hand side of the equation is zero, meaning momentum1 = momentum2 (and therefore there is no change in momentum).
Therefore, without a force being applied for a period of time, momentum is conserved.
Answered by
26
The law of conservation of linear momentum states that if no external forces act on the system of two colliding objects, then the vector sum of the linear momentum of each body remains constant and is not affected by their mutual interaction.
Similar questions