State the main goal of the robot in each Search and Rescue challenge room. (2 points each) 1. Empty Room - ____________________________________________________________ 2. Fire Room - ______________________________________________________________ 3. Rescue Room - ___________________________________________________________ 4. Walled Room - ____________________________________________________________
Answers
Answer:
A swarm of autonomous flying robots is implemented in simulation to cooperatively gather situational awareness data during the first few hours after a major natural disaster. In computer simulations, the swarm is successful in locating over 90% of survivors in less than an hour. The swarm is controlled by new sets of reactive behaviors which are presented and evaluated. The reactive behaviors integrate collision avoidance, battery recharge, formation control, altitude maintenance, and a variety of search methods to optimize the coverage area of camera and heart-beat locator sensors mounted on the robots. The behaviors are implemented in simulation on swarms of sizes from 1 to 20 robots. The simulation uses actual location data, including post-disaster satellite imagery, real locations of damaged and inundated buildings, and realistic victim locations based on personal interviews and accounts. The results demonstrate the value of using behavior-based swarming algorithms to control autonomous unmanned aerial vehicles for post-disaster search and assessment. Three examples of algorithms that have been effective in simulation are presented.
Introduction
WITH little warning, a powerful earthquake shatters the quiet calm of a coastal city, followed shortly by the periodic waves of a brutal tsunami strike. Within minutes, local rescue workers rush to disaster sites, where they are greeted with a morass of broken buildings, piled cars, and splintered debris. Where once streets and fields stretched peacefully, now sit water-inundated lagoons filled with hazardous material. Mobility is extremely limited. Conditions are harsh; it is cold, night is soon to fall, and it is starting to snow. There are debris everywhere; it is hard to even walk.
The workers pull their truck up to a roadblock of over-turned cars. Only a half dozen workers have made it to the site so far. But people are in the water, trapped in cars, trapped in buildings, and there is no time to wait. The rescue workers pull small, cheap quadcopter unmanned aerial vehicles (UAVs) out from the back of their truck. The workers are already cold and wet, thinking about finding casualties, and preparing equipment. They just want to know where to find people, but how can they find anyone in this devastation?