state the marit and demarit of stratified rendom sampling
Answers
Explanation:
Stratified sampling offers several advantages over simple random sampling. A stratified sample can provide greater precision than a simple random sample of the same size. Because it provides greater precision, a stratified sample often requires a smaller sample, which saves money.
mark it as brainlyst
give thanks
Answer:
Stratified random sampling involves first dividing a population into subpopulations and then applying random sampling methods to each subpopulation to form a test group.
Advantages of Stratified Random Sampling
Stratified random sampling has advantages when compared to simple random sampling.
Accurately Reflects Population Studied
Stratified random sampling accurately reflects the population being studied because researchers are stratifying the entire population before applying random sampling methods. In short, it ensures each subgroup within the population receives proper representation within the sample. As a result, stratified random sampling provides better coverage of the population since the researchers have control over the subgroups to ensure all of them are represented in the sampling.
With simple random sampling, there isn't any guarantee that any particular subgroup or type of person is chosen. In our earlier example of the university students, using simple random sampling to procure a sample of 100 from the population might result in the selection of only 25 male undergraduates or only 25% of the total population. Also, 35 female graduate students might be selected (35% of the population) resulting in under-representation of male undergraduates and over-representation of female graduate students. Any errors in the representation of the population have the potential to diminish the accuracy of the study.
Disadvantages of Stratified Random Sampling
Stratified random sampling also presents researchers with a disadvantage.
Can't Be Used in All Studies
Unfortunately, this method of research cannot be used in every study. The method's disadvantage is that several conditions must be met for it to be used properly. Researchers must identify every member of a population being studied and classify each of them into one, and only one, subpopulation. As a result, stratified random sampling is disadvantageous when researchers can't confidently classify every member of the population into a subgroup. Also, finding an exhaustive and definitive list of an entire population can be challenging.
Overlapping can be an issue if there are subjects that fall into multiple subgroups. When simple random sampling is performed, those who are in multiple subgroups are more likely to be chosen. The result could be a misrepresentation or inaccurate reflection of the population.
The above example makes it easy: Undergraduate, graduate, male, and female are clearly defined groups. In other situations, however, it might be far more difficult. Imagine incorporating characteristics such as race, ethnicity, or religion. The sorting process becomes more difficult, rendering stratified random sampling an ineffective and less than ideal method.
Hope it helps... Please mark as the Brainliest!!!