Math, asked by hasanabadasunitha, 1 month ago

state the necessary and sufficient condition for Lx+my+n=0 to be a normal to the circle x²+y²+2gx+2fy+c=0​

Answers

Answered by AbhinavRocks10
3

Let's solve for c.

\rm x^2+y^2+2gx+2fy+c=0

Step 1: Add -2fy to both sides.

\rm 2fy+2gx+x^2+y^2+c+−2fy=0+−2fy

\rm 2gx+x^2+y^2+c=−2fy

Step 2: Add -2gx to both sides.

\rm^2gx+x^2+y^2+c+−2gx=−2fy+−2gx

\rm x^2+y^2+c=−2fy−2gx

Step 3: Add -x^2 to both sides.

\rm x^2+y^2+c+−x^2=−2fy−2gx+−x^2

\rm y^2+c=−2fy−2gx−x^2

Step 4: Add -y^2 to both sides.

\rm y^2+c+−y^2=−2fy−2gx−x^2+−y^2

\rm c=−2fy−2gx−x^2−y^2

Answer:

\rm c=−2fy−2gx−x^2−y^2

Similar questions