Math, asked by mughu68, 10 months ago

State true or false. (2, 3), (4, 0) and (6, -3) are collinear points.

Answers

Answered by mysticd
2

 Let \: A(2,3), B(4,0) \:and \: C(6,-3) \: are

 Vertices \: of \: a \: triangle \: ABC

/* By using Area of the Triangle Formula: */

 \triangle = \frac{1}{2}|x_{1}(y_{2}-y_{3}) +x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})|

 = \frac{1}{2}|2[0-(-3)] + 4(-3+3)+6(3-0)|

 = \frac{1}{2}|2\times 3 + 4 \times 0 + 6 \times 3 |

 = \frac{1}{2}| 6 + 0 + 18|

 = \frac{1}{2} \times 24

 = 12 \: square \:units

 \neq 0

\green{ \therefore Given \:points \: are \: not \: collinear}.

 \red{ Given \: statement \:is \:false }

•••♪

Similar questions