Math, asked by ssathyanarayan73, 19 days ago

State whether 3 is a zero of the polynomial p(x)=2.³-11²+ 17-6. Q9. Type:​

Answers

Answered by khushpreet1463
0

Answer:

Hii please mark me as BRAINIEST answer this is the example

EXPLANATION:

a number α is root / zero of a polynomial p(x) if P(α)=0

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6=41−11+34−24=0

a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6=41−11+34−24=0Hence verified.

Answered by hardik210806bisht
1

Answer:

yes 3 is a zero of the polynomial

Step-by-step explanation:

i think h=that the equation should be 2x^3-11x^2+17x-6

let x=3

2(3)^3 - 11(3)^2 +17(3) - 6

=2*27 - 99 + 51 -6

=105-105

=0

hence proved

Similar questions