State whether 3 is a zero of the polynomial p(x)=2.³-11²+ 17-6. Q9. Type:
Answers
Answer:
Hii please mark me as BRAINIEST answer this is the example
EXPLANATION:
a number α is root / zero of a polynomial p(x) if P(α)=0
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6=41−11+34−24=0
a number α is root / zero of a polynomial p(x) if P(α)=0p(2)=2(2)3−11(2)2+17(2)−6=16−44+34−6=0p(3)=2(3)3−11(3)2+17(3)−6=54−99+51−6=0p(21)=2(21)3−11(21)2+17(21)−6=41−11+34−24=0Hence verified.
Answer:
yes 3 is a zero of the polynomial
Step-by-step explanation:
i think h=that the equation should be 2x^3-11x^2+17x-6
let x=3
2(3)^3 - 11(3)^2 +17(3) - 6
=2*27 - 99 + 51 -6
=105-105
=0
hence proved