Math, asked by Anonymous, 5 months ago

State which of the following option is true.

a. \sqrt[3]{ \frac{125 \times 64}{0.001331} }  =  \frac{2000}{11} \\   \\ b. \sqrt[3]{216}  -  \sqrt[3]{0.027}   +  \sqrt[3]{0.125}   = 6.8 \\  \\ c.  \: \sqrt[3]{ \frac{0.512}{0.064} }  \div  \sqrt[3]{0.008}  = 10
Options :-
a) only a
b) only c
c) both a and c
d) All a, b and c​

Answers

Answered by arjayararao01
0

Answer:

the answer is a

Step-by-step explanation:

a.

3

0.001331

125×64

=

11

2000

Answered by mathdude500
11

\bf \:\large \red{AηsωeR : a} ✍

 \tt \: Consider \:  LHS \:  :  \sqrt[3]{ \dfrac{125 \times 64}{0.001331} }

 \tt \:  =  \sqrt[3]{ \dfrac{125 \times 64 \times 1000000}{1331} }

\tt \:  =  \sqrt[3]{ \dfrac{5 \times 5 \times 5 \times 4 \times \times 4 \times 4 \times  100 \times 100 \times 100}{11 \times 11 \times 11} }

 \tt \:  = \dfrac{5 \times 4 \times 100 }{11}  = \dfrac{2000}{11}

\bf\implies \:➦ LHS = RHS

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : b} ✍

  \tt \: \sqrt[3]{216} - \sqrt[3]{0.027} + \sqrt[3]{0.125} = 6.8

 \tt \: Consider  \: LHS \:  \sqrt[3]{216} - \sqrt[3]{0.027} + \sqrt[3]{0.125}

 \tt \:   = \sqrt[3]{6 \times 6 \times 6} - \sqrt[3]{\dfrac{27}{1000} } + \sqrt[3]{\dfrac{125}{1000} }

 \tt \:   = 6 - \sqrt[3]{\dfrac{3 \times 3 \times 3}{10 \times 10 \times 10} } + \sqrt[3]{\dfrac{5 \times 5 \times 5}{10 \times 10 \times 10} }

 \tt \:  = 6 - \dfrac{3}{10}   +  \dfrac{5}{10}

 \tt \:  = \dfrac{60 - 3 + 5}{10}  = \dfrac{62}{10}  = 6.2

\bf \:  ➦ LHS ≠ RHS

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\large \red{AηsωeR : c} ✍

 \tt \:  \: \sqrt[3]{ \dfrac{0.512}{0.064} } \div \sqrt[3]{0.008} = 10

 \tt \: Consider \:  LHS \:  \tt \:  \: \sqrt[3]{ \dfrac{0.512}{0.064} } \div \sqrt[3]{0.008}

\tt \:  \:  = \sqrt[3]{ \dfrac{512}{64} } \div \sqrt[3]{ \dfrac{8}{1000} }

\tt \:  \:  = \sqrt[3]{ \dfrac{8 \times 8 \times 8}{4 \times 4 \times 4} } \div \sqrt[3]{ \dfrac{2 \times 2 \times 2}{10 \times 10 \times 10} }

 \tt \:  = 2   \div  \dfrac{2}{10}

 \tt \:  = 10

\bf \:  ➦ LHS = RHS

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option \: (c) \: is \: correct}}}}

Similar questions