Math, asked by bhavya728jp, 3 months ago

STD 8

Find the difference between simple of interest and compound interest on Rs 4000 at 10% for 2 years​

Answers

Answered by manjuravinov28
0

Answer:

P=4000,r=10%,n=2years. On Calculation A we get, A=P(1+r100)n⇒A=4000(1+10100)2⇒A=P(1+110)2⇒A=4000(1110)2⇒A=4000×121100⇒A=4840 Rs. Hence the amount after 2 years will be 4840 and it'll only work as the principal amount for simple interest.

Step-by-step explanation:

Please mark me as brainlist dear

Answered by SachinGupta01
19

\bf \: \underline{Given} :

\sf \implies Principal = Rs. \: 4000

\sf \implies Rate = 10 \: \%

\sf \implies Time = 2 \: years

\bf \: \underline{To \: find} :

\sf \implies Compound \: interest - Simple \: interest = \: ?

\bf \: \underline{\underline{Solution}}

\sf \: First \: of \: all, let's \: find \: the \: value \: of \: (S.I) \: Simple \: interest.

\sf \implies \boxed{ \sf \: \pink{S.I = \dfrac{Principal \times Rate \times Time }{100} }}

\sf \implies\sf \:S.I = \dfrac{4000 \times 10 \times 2 }{100}

\sf \implies\sf \:S.I = \dfrac{40\!\!\!\not0\!\!\!\not0 \times 10 \times 2 }{1\!\!\!\not0\!\!\!\not0}

\sf \implies\sf \:S.I = 40 \times 10 \times 2

 \red{\sf \implies\sf \: S.I  =  Rs. \:  800}

\sf \: Now, we \: will \: find \: the \: value \: of \: (C.I) \: Compound \: interest.

\sf \: For \: that, we \: have \: \: to \: find \: the \: amount.

\sf \implies \boxed{ \sf \: \pink{Amount = P \bigg( 1 + \dfrac{R }{100} \bigg)^{n} }}

\sf \implies \sf 4000 \bigg( 1 + \dfrac{10}{100} \bigg)^{2}

\sf \implies \sf 4000 \bigg( 1 + \dfrac{1}{10} \bigg)^{2}

\sf \implies \sf 4000 \bigg( \dfrac{10 + 1}{10} \bigg)^{2}

\sf \implies \sf 4000 \bigg( \dfrac{11}{10} \bigg)^{2}

\sf \implies \sf 4000  \times  \dfrac{121}{100}

\sf \implies \sf 40 \times 121

\red{\sf \implies \sf Amount = Rs. \: 4840}

\sf \: Now, Compound \: interest = Amount - Principal

\sf \implies \sf Rs. \: 4840 \: - \: Rs. \: 4000

\red{\sf \implies \sf Compound \: interest = Rs. \: 840}

\sf \: Now, difference \: between \: C.I \: and \: S.I \: is :

\sf \implies \sf Compound \: interest \: - \: Simple \: interest

\sf \implies \sf Rs. \: 840 \: - \: Rs. \: 800

\red{\sf \implies \sf Rs. \: 40}

\underline{ \boxed{ \pink{ \sf \: Hence, the \: difference \: between \: C.I \: and \: S.I = Rs. \: 10}}}

Similar questions