Physics, asked by biswajit1636, 11 months ago

Steam at 120°C is continuously passed through a 50 cm long rubber tube of inner and outer radii 1.0 cm and 1.2 cm. The room temperature is 30°C. Calculate the rate of heat flow through the walls of the tube. Thermal conductivity of rubber = 0.15 J s−1 m−1°C−1.

Answers

Answered by bhuvna789456
1

The rate of heat flow through the walls of the tube is q \approx 233 \mathrm{J} / \mathrm{s}

Explanation:

Step 1:

Let,

Inner radius r_{1}=1 \mathrm{cm}

Outer radius r_{2}=1.2 \mathrm{cm}

Steam temp. \mathrm{T}_{1}=120 \bullet \mathrm{c}

Room temp. \mathrm{T}_{2}=30 \bullet \mathrm{c}

Length of tube \mathrm{I}=50 \mathrm{cm}

Thermal conductivity \mathrm{K}=0.15 \mathrm{JS}^{-1} \mathrm{m}^{-1} \bullet \mathrm{c}^{-1}

Step 2:

Rate of heat flow =\frac{d Q}{d t}

q=\frac{d Q}{d t}=-\frac{K A \Delta T}{d x}=-\frac{K(2 \pi x) t \Delta T}{d x}

\frac{d x}{x}=-\frac{2 \pi K l d T}{q}

Step 3:

Integrating both sides

\int_{r_{1}}^{r_{2}} \frac{d x}{x}=-\frac{2 \pi K \imath \int_{T_{1}}^{T_{2}} d T}{q}

q=-\frac{2 \pi K l\left(T_{2}-T_{1}\right)}{\ln \frac{r_{2}}{r_{1}}}

By substituting the values in above equation

q \approx 233 \mathrm{J} / \mathrm{s}

Similar questions