Physics, asked by scrappythecholo07, 9 months ago

Steam condenses at atmospheric pressures on the external surface of the tubes
of a steam condenser. The tubes are 12 in number and each is 30 mm in
diameter and 10 m long. The inlet and outlet temperatures of cooling water
flowing inside the tubes are 25 °C and 60 °C, respectively. If the flow rate is 1.1
kg/s, calculate the following: 0 the rate of condensation of steam, (ii) the mean
overall heat transfer coefficient based on the inner surface area and the
number of transfer units.​

Answers

Answered by knjroopa
2

Explanation:

Given Steam condenses at atmospheric pressures on the external surface of the tubes of a steam condenser. The tubes are 12 in number and each is 30 mm in  diameter and 10 m long. The inlet and outlet temperatures of cooling water  flowing inside the tubes are 25 °C and 60 °C, respectively. If the flow rate is 1.1 kg/s, calculate the following: 0 the rate of condensation of steam, (ii) the mean overall heat transfer coefficient based on the inner surface area and the number of transfer units.

  • Given :  We need to find  
  •               The rate of condensation of steam
  •                  So heat lost by steam = heat gained by water
  •                          So m1 x h = m2 x C (t2 – t1)    (c is the specific heat capacity)
  •       So h is the latent heat of steam at atmospheric pressure = 2257 kJ / kg
  •                        So m1 x 2257 = 1.1 x 4.187 x (60 – 25)  
  •                                             m = 161.1995 / 2257
  •                                                   = 0.0714 kg / s
  •                                                    = 0.0714 x 3600
  •                                                    = 257 kg / h
  •         The mean overall hat transfer coefficient U:
  •                             Q = m2 x c x (t2 – t1)
  •                                 = 1.1 x 4.187 x 10^3 (60 – 25) (specific heat of water)
  •                               Q  = 161199.5 J/s
  •      Now Q = U A Theta m ------------------------- 1
  •                           So theta m = theta 1 – theta 2 / log that 1 / theta 2
  •                                              = 100 – 25 – (100 – 60) / log (100 – 25) / (100 – 60)
  •                                              = 75 – 40 / log (75 / 40)
  •                                              = 55.678 deg C
  •                               So A = N x π d L
  •                                        = 12 x 3.14 x 0.03 x 10 ( 30 mm = 0.03 m)
  •                                      A = 11.304 sq m      
  • Substituting the values in equation 1 we get
  •                                 161199.5 = U x 11.304 x 55.678
  •                                 161199.5 = U x 629.384112
  •                                          U = 161199.5 / 629.384112
  •                                             U = 256.122 W / m^2 deg C
  •         The number of transfer units :
  •      So C max is the hot fluid that stays at constant temperature and C min refers to water.
  •           So C min = m x c (c is the specific heat capacity)
  •                            = 1.1 x 4.187 x 10^3
  •                           = 4605.7 W / deg C
  •        Now number of transfer units will be = U A / C min
  •                                                                           = 255.9 x 11.304 / 4605.7
  •                                                                          = 0.628  

Reference link will be

https://brainly.in/question/22583268

Similar questions