Math, asked by Kalika03, 1 year ago

step by step answer.....

Attachments:

Answers

Answered by Anonymous
1

Good Morning!

( - 1 )/x = 1/2 { Given }

/x - 1/x = 1/2

x - 1/x = 1/2

SQUARING ON BOTH SIDE'S WE HAVE

( x - 1/x )² = ( 1/2 )²

+ 1/ - 2x ( 1/x ) = 1/4

Becoz ( a - b )² = + - 2ab

+ 1/ = (1/4) + 2

+ 1/ = 9/4

MULTIPLY BOTH SIDES BY 4 WE HAVE

4( + 1/ ) = (9/4) × 4

4x² + 4/ = 9

SO,

4x² + 4/ = 9

Answered by abhi569
3

Given numeric value of ( x^2 - 1 ) / x = 1 / 2.

 \implies  \dfrac{x {}^{2}  - 1}{x}  =  \dfrac{1}{2}  \\  \\  \implies  \dfrac{ {x}^{2} }{x}  -   \dfrac{1}{x}  =  \dfrac{1}{2}  \\  \\  \implies x -  \dfrac{1}{x}  =  \dfrac{1}{2}  \\  \\   \implies \bigg( x -  \dfrac{1}{x} \bigg) \times 2  =  \dfrac{1}{2}  \times 2 \\  \\ \implies 2 x -  \dfrac{2}{x}  = 1

Square on both sides : -

 \implies  \bigg \{2 x -  \dfrac{2}{x}  \bigg \} {}^{2}  =  {1}^{2}

From the properties of indices :

  • ( a - b )^2 = a^2 + b^2 + 2ab

\implies (2 x) {}^{2}  +   \bigg( \dfrac{2}{x}  \bigg) {}^{2} - 2 \bigg(2x \times  \dfrac{2}{x } \bigg) =  {1}^{2} \\  \\  \implies 4 {x}^{2}  +  \frac{4}{ {x}^{2} }  - 2(4) = 1 \\  \\ \implies 4 {x}^{2}  +  \frac{4}{ {x}^{2} }   = 1 + 8 \\  \\ \implies 4 {x}^{2}  +  \frac{4}{ {x}^{2} }   = 9

Hence the required numeric value of  4 {x}^{2}  +  \frac{4}{ {x}^{2} } is 9.

Similar questions