English, asked by Kimmy55, 11 hours ago

step by step answer
 \sqrt{248 +  \sqrt{52 +  \sqrt{144} } }

Answers

Answered by rehanna0911
1

Answer:

We need to find value of   √248 +  52 +  144

​ ​  =  √248 +  52 + 12

​=  √248 +  64

​ =  √248 + 8

​ =  √256

​ = 16

Hope it helps you!!

Answered by MrImpeccable
41

ANSWER:

To Simplify:

  •  \sqrt{248 + \sqrt{52 + \sqrt{144} } }

Solution:

We are given that,

\implies \sqrt{248 + \sqrt{52 + \sqrt{144} } }

We know that,

⇒ 144 = 12 × 12

\implies \sqrt{248 + \sqrt{52 + \sqrt{12\times12} } }

\implies \sqrt{248 + \sqrt{52 + \sqrt{12^2} } }

\implies \sqrt{248 + \sqrt{52 + 12 } }

\implies \sqrt{248 + \sqrt{64 } }

We know that,

⇒ 64 = 8 × 8

\implies \sqrt{248 + \sqrt{8\times8 } }

\implies \sqrt{248 + \sqrt{8^2 } }

\implies \sqrt{248 + 8 }

\implies \sqrt{256}

We know that,

⇒ 256 = 16 × 16

\implies \sqrt{16\times16}

\implies \sqrt{16^2}

\implies 16

Therefore,

\implies\bf \sqrt{248 + \sqrt{52 + \sqrt{144} } }=16

Similar questions