step by step explaination:
Answers
Answer:
∆ABO≈ ∆AOD
So,AB=AD
By CPCTC
Similarly
∆BOC≈∆COD
So, BC=DC
By CPCTC
Question:
In □ABCD, diagonal AC is perpendicular bisector of seg BD. Prove that -
1) AB = AD
2) BC = DC
Answer:
1) Seg AB ≅ Seg AD
2) Seg BC ≅ Seg DC
Step-by-step-explanation:
NOTE: Refer to the attachment for the diagram.
1)
We have given that, In □ABCD,
Diagonal AC is perpendicular bisector of seg BD.
∴ AC ⊥ BD
∴ m∟AOB = m∟AOD = 90°
∴ ∠AOB ≅ ∠AOD - - ( 1 )
Now,
Seg AC is the bisector of seg BD.
∴ Seg BO ≅ Seg DO - - ( 2 )
Now, in △AOB & △AOD,
Seg BO ≅ Seg DO - - [ From ( 2 ) ]
∠AOB ≅ ∠AOD - - [ From ( 1 ) ]
Seg AO ≅ Seg AO - - [ Common side ]
∴ △AOB ≅ △AOD - - [ S - A - S test ]
∴ Seg AB ≅ Seg AD - - [ c. s. c. t. ]
Hence proved!
─────────────────────
2)
Now,
m∟BOC = m∟DOC = 90° - - [ AC ⊥ BD ]
∴ ∠BOC ≅ DOC - - ( 3 )
Now, in △BOC & △DOC,
Seg BO ≅ Seg DO - - [ From ( 2 ) ]
∠BOC ≅ DOC - - [ From ( 3 ) ]
Seg OC ≅ Seg OC - - [ Common side ]
∴ △BOC ≅ △DOC - - [ S - A - S test ]
∴ Seg BC ≅ Seg DC - - [ c. s. c. t. ]