Math, asked by dashsanjay07, 2 months ago

Step by step explanation​

Attachments:

Answers

Answered by Anonymous
6

Step-by-step explanation:

 \frac{1}{ \sqrt{5}  +  \sqrt{3} -  \sqrt{8}  }

\frac{1}{ (\sqrt{5}  +  \sqrt{3}) -  \sqrt{8}  }  \times  \frac{( \sqrt{5} +  \sqrt{3} ) +  \sqrt{8}  }{( \sqrt{5} +  \sqrt{3}) +  \sqrt{8}   }

 \frac{( \sqrt{5} +  \sqrt{3})  +  \sqrt{8}   }{(( \sqrt{5} +  \sqrt{3})  -   \sqrt{8} )((  \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} ) }

 \scriptsize \frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{( \sqrt{5} +  \sqrt{3} ) ^{2} - ( \sqrt{8} )^{2}   }   \:  \:  (\because \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2} )

 \scriptsize \frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{( (\sqrt{5}) ^{2}  +2 \sqrt{5}  \sqrt{3}   + ( \sqrt{3})^{2} )- 8   }   \:  \:  (\because \: (a  + b)^{2}  =  {a}^{2}  + 2ab +  {b}^{2}  )

\frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{( 5+2 \sqrt{15}  +3)- 8   }

\frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{( 8 \: + \: 2 \sqrt{15} )- 8   }

\frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{ 8 \: + \: 2 \sqrt{15}  \: -  \: 8   }

\frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{ 2 \sqrt{15}  }

Now rationalise this again.

\frac{( \sqrt{5}  +  \sqrt{3} ) +  \sqrt{8} }{ 2 \sqrt{15}  }  \times  \frac{2 \sqrt{15} }{2 \sqrt{15} }

 \frac{(( \sqrt{5}  +  \sqrt{3}) +  \sqrt{8}) (2 \sqrt{15})  }{(2 \sqrt{15})^{2}  }

 \frac{(2 \sqrt{15}) ( \sqrt{5}  +  \sqrt{3}) +  (\sqrt{8}) (2 \sqrt{15})  }{(2 \sqrt{15})^{2}  }

 \frac{2 \sqrt{75} + 2 \sqrt{45} +  2 \sqrt{120}  }{4 \times 15 }

\frac{2 (\sqrt{75} +  \sqrt{45} +   \sqrt{120} ) }{60 }

\frac{\sqrt{75} +  \sqrt{45} +   \sqrt{120}  }{30 }

I hope it is helpful

Answered by ravikantsinha740
1

Answer:

hope it helpss youu✌️✌️..

Attachments:
Similar questions