Math, asked by devanapallisrivalli, 6 months ago

Subject:maths
Chapter:logarithms​

Attachments:

Answers

Answered by MagicalBeast
5

Given :

\sf \bullet  \:  \: log_{10}(2)  =  \: 0.3010 \\  \\ \sf \bullet  \:  \:  log_{10}(3)  =  \: 0.4771

To find :

\sf \:  log( \sqrt[3]{48} \:  \times   \: \sqrt{108} \:   \div \:  12 \sqrt{6}  )

Identity used :

\sf \bullet \:  \:   log( {a}^{m} )  = m \times  log(a)  \\  \\ \sf \bullet  \:  \:  log(a \times b)  \:  =  \:  log(a)  +  \:  log(b)  \\  \\ \sf \bullet  \:  log(a \div b)  =  \:  log(a)  -  log(b)

Solution :

First of all we should simplify the terms , inside of log

 \sf \bullet \:  \sqrt[3]{48}  =  \sqrt[3]{(2 \times 2 \times 2 \times 2 \times 3)}  \\  \\  \sf \implies \:  \sqrt[3]{48}  =  \sqrt[3]{ {2}^{3}  \times 2 \times 3}  \\  \\  \sf \implies \:   \sqrt[3]{48}  = 2 \times ( \sqrt[3]{2 \times 3} )

_______________________________________________

 \bullet \:  \:  \sqrt{108}  \:  =  \:  \sqrt{(2 \times 2  \times 3 \times 3 \times 3)} \\  \\  \implies \:  \sqrt{108}   =  \sqrt{ {2}^{2} \times  {3}^{3}  }  \\  \\  \implies \:  \sqrt{108}  =  (2 \times 3)\sqrt{3}

_______________________________________________

 \bullet \:  \:  12 \times \sqrt{6}  = 2 \times 2 \times 3 \times \sqrt{2 \times 3}

_______________________________________________

Therefore,

\sf \:  log( \sqrt[3]{48} \:  \times   \: \sqrt{108} \:   \div \:  12 \sqrt{6}  )  \\  \\  \sf \implies \:  log((2 \times   \sqrt[3]{2} \times  \sqrt[3]{3}   ) \times (2 \times 3 \times  \sqrt{3})  \div ( {2}^{2}  \times 3 \times  \sqrt{2 }  \times  \sqrt{3} ))  \\  \\ \sf \implies \:  log(  \dfrac{ {2}^{2} \times  3 \times  \sqrt[3]{2} \times  \sqrt[3]{3}  \times  \sqrt{3}  }{ {2}^{2} \times 3 \times  \sqrt{2} \times  \sqrt{3}   }  )  \\  \\ \sf \implies log(  \dfrac{ \sqrt[3]{2} \times   \sqrt[3]{3}   }{ \sqrt{2} }  )  \\  \\ \sf \implies \:  log(  \sqrt[3]{2}  )  +  log( \sqrt[3]{3} )  -  log( \sqrt{2} )  \\  \\ \sf \implies \:  \dfrac{1}{3}  log(2)  \:  +  \:  \dfrac{1}{3}  log(3)  -  \dfrac{1}{2}  log(2)  \\  \\ \sf \implies \:  \dfrac{1}{3}  \times 0.3010 \:  +  \dfrac{1}{3}  \times 0.4771 \:  -  \dfrac{1}{2} 0.3010 \\  \\ \sf \implies \:  0.1003 \:  +  \:0.1590 \:  -  \: 0.1505  \\  \\ \sf \implies  \bold{0.1088}

ANSWER : 0.1088

Similar questions