Math, asked by thammalijanaki, 5 months ago

subject maths tell me answer friends​

Attachments:

Answers

Answered by Anonymous
0

Answer:

 \frac{(1 -  \sin( \alpha ) )}{(1 +  \sin( \alpha ) )}  \\  =  \frac{(1  -  \sin( \alpha ))(1  -  \sin( \alpha ) ) }{(1 +  \sin( \alpha ))(1 -  \sin( \alpha ) ) }  \\  =  \frac{(1 -  \sin( \alpha ) ) {}^{2} }{1 -  \sin {}^{2} ( \alpha)  }  \\  =  \frac{(1 +  \sin {}^{2}  (\alpha )  - 2 \sin( \alpha ) }{ \cos{}^{2}  (\alpha) }  \\  =  \frac{1}{ \cos {}^{2} ( \alpha ) }  +   \frac{  \sin {}^{2} (\alpha   ) }{ \cos{}^{2}  (\alpha ) }  -  \frac{2 \sin( \alpha ) }{ \cos{}^{2} ( \alpha ) }  \\  =  \sec{}^{2} (\alpha  )  +  \tan{}^{2} ( \alpha )  - 2 \tan( \alpha )  \sec( \alpha )  \\  = ( \sec( \alpha )  -  \tan( \alpha ) ) {}^{2}  \:  \: (proved) \\  \\ formula \:  \:  -  \\ trigonometry -  \frac{1}{ \cos( \alpha ) }  =  \sec( \alpha )  \\  \\  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \tan( \alpha )  \\  \\  \sin {}^{2}( \alpha  )  +  \cos{}^{2} ( \alpha )  = 1 \\  \cos{}^{2}( \alpha  )  = 1 -    \sin{}^{2}( \alpha  )  \\  \\  \\ algebra \:  - x {}^{2}  - y {}^{2}  = (x + y)(x - y) \\  \\ (x - y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

Similar questions