Math, asked by mehboobislam15, 14 days ago

subject mid-point or pythagoras theorem​

Attachments:

Answers

Answered by MysticSohamS
0

Answer:

hey here is your entire proof

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\ c {}^{2}  = a {}^{2}  + b {}^{2}  - 2ax \\  \\ so \: considering \:  \: △ \: ABD\\ as \: ∠ABD = 90 \\ applying \: pythagoras \: theorem \\  \\ AB {}^{2}  = AD {}^{2}  + DB {}^{2}  \\  \\ c {}^{2}  = h {}^{2}  + (a - x) {}^{2}  \\ \\  h {}^{2}  = c {}^{2}  - (a - x) {}^{2}  \:  \:  \:  \:  \: (1)

similarly \:  \\ considering \: △ \: ADC \\ as \:  \: ∠ADC = 90 \\ by \: \:  pythagoras \:  \: theorem \\  \\ AC {}^{2}  = AD {}^{2}  + DC {}^{2}  \\  \\ b {}^{2}  = h {}^{2}  + x {}^{2}  \\  \\ h {}^{2}  = b {}^{2}  - x {}^{2}  \:  \:  \:  \:  \:  \:  \:  \: (2)

equating \: (1) \:  \: and \:  \: (2) \\  \\ c {}^{2}  - (a - x) {}^{2}  = b {}^{2}  - x {}^{2}  \\  \\ c {}^{2}  - (a {}^{2}  + x {}^{2}  - 2ax) = b {}^{2}  - x {}^{2}  \\  \\ c {}^{2}  - a {}^{2}  - x {}^{2}  + 2ax = b {}^{2}  - x {}^{2}  \\  \\ c {}^{2}  = a {}^{2}   - 2ax + b {}^{2}  \\  \\ c {}^{2}  = a {}^{2}  + b {}^{2}  - 2ax \\  \\ thus \: proved

Similar questions