Physics, asked by arya5726, 8 months ago

substance of mass 5 kg is moving in y direction,force F=kt^2 is acting in the direction of motion,where k=15s^-2. The distance travelled by substance in the first 2 second_,and speed after 2 sec is_?

Answers

Answered by nirman95
7

Given:

Substance of mass 5 kg is moving in y direction,force F=kt^2 is acting in the direction of motion,where k=15s^-2.

To find:

  • Distance in 2 sec ?
  • Speed after 2 sec ?

Calculation:

 \therefore \: F = k {t}^{2}

 \implies\: F = 15 {t}^{2}

 \implies\: ma = 15 {t}^{2}

 \implies\: 5a = 15 {t}^{2}

 \implies\: a =3 {t}^{2}

 \implies\:  \dfrac{dv}{dt}  =3 {t}^{2}

 \implies\: dv  =3 {t}^{2}  \: dt

 \implies\:  \displaystyle \int dv  =3  \int{t}^{2}  \: dt

 \implies\:  \displaystyle \int_{0}^{v} dv  =3  \int_{0}^{2}{t}^{2}  \: dt

 \implies\:  \displaystyle v =  {t}^{3}   \bigg| _{0}^{2}

 \boxed{ \implies\:  \displaystyle v = 8 \: m {s}^{ - 1} }

 \implies\:  \displaystyle v =  {t}^{3}

 \implies\:  \displaystyle  \dfrac{dx}{dt}  =  {t}^{3}

 \implies\:  \displaystyle  dx=  {t}^{3}   \: dt

 \implies\:  \displaystyle  \int_{0}^{x} dx=   \int_{0}^{2}{t}^{3}   \: dt

 \implies\:  \displaystyle  x =       \frac{ {t}^{4} }{4} \bigg| _{0}^{2}

 \implies\:  \displaystyle  x =   \dfrac{16}{4}

 \boxed{ \implies\:  \displaystyle  x = 4 \: m}

Hope It Helps.

Similar questions