Math, asked by jadhavsunanda8675, 6 hours ago

Substitution and Elimination Theta Question Maths​

Attachments:

Answers

Answered by Harahit121
1

Step-by-step explanation:

Try by using log x substitute by t

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:sin5\theta  - sin3\theta  + sin\theta  = 0

can be rewritten as

\rm :\longmapsto\:(sin5\theta + sin\theta )  - sin3\theta= 0

We know,

\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

So, using this identity, we get

\rm :\longmapsto\:2sin\bigg[\dfrac{5\theta  + \theta }{2} \bigg]cos\bigg[\dfrac{5\theta - \theta  }{2} \bigg] - sin3\theta  = 0

\rm :\longmapsto\:2sin3\theta cos2\theta  - sin3\theta  = 0

\rm :\longmapsto\:sin3\theta (2cos2\theta  - 1) = 0

\rm\implies \:sin3\theta  = 0 \:  \: or \:  \: cos2\theta  =  \dfrac{1}{2}

\rm\implies \:3\theta  = \dfrac{\pi}{2}  \:  \: or \:  \: 2\theta  = \dfrac{\pi}{3}

\rm\implies \:\theta  = \dfrac{\pi}{6}  \:  \: or \:  \: \theta  = \dfrac{\pi}{6}

\bf\implies \:\theta  = \dfrac{\pi}{6}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions