Math, asked by sishir8377, 7 months ago

substract the sum of 2a + 5b -7c +1 and 7a - 3b + 9c - 5 from 5c - 3a + b + 13​

Answers

Answered by SheerinFarhana
5

Answer:

11a-b-3c-17

Step-by-step explanation:

[2a + 5b -7c +1 + 7a - 3b + 9c -5] - (5c - 3a + b + 13)

=[2a+7a +5b-3b - 7c+9c +1-5] - (5c - 3a + b + 13)

=[9a+2b+2c-4] - (5c-3a+b+13)

=9a+2b+2c-4-5c+3a-b-13

=9a+3a+2b-b+2c-5c-4-13

=11a-b-3c-17

Answered by Anonymous
5

\Large{\boxed{\underline{\overline{\mathfrak{\star \: AnSwer :- \: \star}}}}}

=>-12a -b + 3c + 17

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

Given

2a + 5b -7c +1 and 7a - 3b + 9c - 5 from 5c - 3a + b + 13

To Find :---

Finding the sum

Step-by-step explanation:

(2a + 5b -7c +1) + ( 7a - 3b + 9c - 5 )

= 2a + 7a + 5b -3b -7c + 9c +1 -5

= 9a +2b +2c -4

Subtracting it from the given polynomial

Now,

(5c - 3a + b + 13 ) - (9a +2b +2c -4)

5c -3a +b + 13 -9a -2b - 2c +4

= (-3a) -9a + b -2b +5c -2c + 13 + 4

= -12a -b + 3c + 17

Similar questions