Math, asked by harinarayanancb1, 5 months ago

subtract -2x² + 5xy + 4y² from the sum of x² - 2xy + y² and 3x² + 4xy - y²

Answers

Answered by Divyaballakuraya
17

Answer:

6x² - 3xy - 4y²

Step-by-step explanation:

NOTE :

  • - * - = +
  • + * + = +
  • + * - = -
  • - * + = -

Add ( sum )

( x² - 2xy + y² ) + ( 3x² + 4xy - y² )

=> x² + 3x² - 2xy + 4xy + y² - y²

=> 4x² + 2xy

Subtract

( 4x² + 2xy ) - ( -2x² + 5xy + 4y² )

=> 4x² + 2xy + 2x² - 5xy - 4y²

=> 4x² + 2x² + 2xy - 5xy - 4y²

=> 6x² - 3xy - 4y²

Answered by cutegirl3786
2

Answer:

\sf{6x {}^{2}  - 3xy - 4y {}^{2} }

Step-by-step explanation:

Note :

  • - * - = +
  • + * + = +
  • + * - = -
  • - * + = -

Add ( sum )

\sf{(x {}^{2} -  2xy \:  +  \: y {}^{2} ) + (3x {}^{2}  + 4xy - y {}^{2}) }

\sf{  => x {}^{2}  - + 3x {}^{2}  - 2xy + 4xy  + y {}^{2}  - y {}^{2} }

\sf{  = > 4x {}^{2}   +  2xy}

Substract

\sf{(4x {}^{2}   + 2xy) - ( - 2x {}^{2}  +5xy +  4y {}^{2} )}

\sf{ =  > 4x {}^{2}  + 2xy + 2x {}^{2}  - 5xy - 4y {}^{2} )}

\sf{ =  > 4x {}^{2}  + 2x {}^{2}  + 2xy - 5xy - 4y {}^{2} }

\sf{ =  > 6x {}^{2}  - 3xy - 4y {}^{2} }

Similar questions