Math, asked by shikhakharb04, 8 hours ago

subtract : 3a(a+2b+c)+2b(a-b) from 4c(-a+b-c)​

Answers

Answered by sheeb12ansari
3

Given: The equation is 3a(a+2b+c)+2b(a-b)and4c(-a+b-c).

We have to subtract 3a(a+2b+c)+2b(a-b)from4c(-a+b-c).

  • As we know that the subtraction is an arithmetic operation that represents the operation of removing objects from a collection.
  • Subtraction is denoted by the minus(-) sign.
  • By using the properties of subtraction, we are solving the above equation.

We are solving in the following way:

We have,

3a(a+2b+c)+2b(a-b)and4c(-a+b-c).

Simplifying the equation3a(a+2b+c)+2b(a-b):

=>3a^2+6ab+3ac+2ab-2b^2

Now, subtracting 3a^2+6ab+3ac+2ab-2b^2from4c(-a+b-c):

=>4c(-a+b-c)-(3a^2+6ab+3ac+2ab-2b^2)\\=>-4ca+4cb-4c^2-3a^2-6ab-3ac-2ab+2b^2\\=>-4c^2-3a^2+2b^2-8ab-7ca

Hence, after subtracting 3a^2+6ab+3ac+2ab-2b^2from4c(-a+b-c) we get-4c^2-3a^2+2b^2-8ab-7ca.

Similar questions