Math, asked by csaptarshi9084, 11 months ago

Subtract 8x^2+3xy+4y^28x 2 +3xy+4y 2 8, x, squared, plus, 3, x, y, plus, 4, y, squared from 12x^2+3xy-5y^212x 2 +3xy−5y 2 12, x, squared, plus, 3, x, y, minus, 5, y, squared. Your answer should be a polynomial in standard form.

Answers

Answered by ashishks1912
1

GIVEN :

The polynomials are 8x^2+3xy+4y^2 and 12x^2+3xy-5y^2.

TO FIND :

The subtraction of the given polynomial 8x^2+3xy+4y^2 from the polynomial 12x^2+3xy-5y^2.

SOLUTION :

Given polynomials are 8x^2+3xy+4y^2 and 12x^2+3xy-5y^2.

Now we can subtract 8x^2+3xy+4y^2 from 12x^2+3xy-5y^2.

Solving we get,

12x^2+3xy-5y^2-(8x^2+3xy+4y^2)

By using the Distributive Property :

a(x+y+z)=ax+ay+az

=12x^2+3xy-5y^2-1(8x^2)+(-1)3xy+(-1)4y^2

=12x^2+3xy-5y^2-8x^2-3xy-4y^2

=4x^2+0xy-9y^2

=4x^2-9y^2

∴ The answer to the given subtraction in standard form of the polynomial is 4x^2-9y^2

By simplifying 4x^2-9y^2

=2^2x^2-3^2y^2

=(2x)^2-(3y)^2

By using the Algebraic Identity:

a^2-b^2=(a+b)(a-b)

=(2x+3y)(2x-3y)

12x^2+3xy-5y^2-(8x^2+3xy+4y^2)=(2x+3y)(2x-3y)

Similar questions