Math, asked by Eshanandinimobile, 4 months ago

Subtract the second expression from the first
expression
7y2 - 9x2 + 21xy, 36x2 - 2y2​

Answers

Answered by Anonymous
16

Given :-

  • 7y² - 9x² + 21xy, 36x² - 2y²

To find :-

  • The answer when 36x² - 2y² is subtracted from 7y² - 9x² + 21xy.

Here,

First expression - 7y² - 9x² + 21xy

Second expression - 36x² - 2y²

Equation - 7y² - 9x² + 21xy - 36x² - 2y²

Let's solve your expression step by step:-

 \leadsto 32x² - 2y² + -1(7y² + 9x² + 2xy)

 \leadsto 32x² - 2y² + -1(7y²) + -1(9x²) + -1(2xy)

 \leadsto 32x² - 2y² - 7y² + -1(9x²) + -1(2xy)

 \leadsto 32x² - 2y² - 7y² + 9x² + -1(2xy)

 \leadsto 36x² + 9x² - 2y² - 7y² - 2xy

 \leadsto 45x² - 9y² - 2xy

Therefore, 7y² - 9x² + 21xy - 36x² - 2y² = 45x² - 9y² - 2xy.

Now, Verification :-

We have,

  • L.H.S = 36x² - 7y² - 9x² + 21xy
  • R.H.S = 45x² - 9y² - 2xy

By evaluating L.H.S :-

 \leadsto 32x² - 2y² + -1(7y² + 9x² + 2xy)

 \leadsto 32x² - 2y² + -1(7y²) + -1(9x²) + -1(2xy)

 \leadsto 32x² - 2y² - 7y² + -1(9x²) + -1(2xy)

 \leadsto 32x² - 2y² - 7y² + 9x² + -1(2xy)

 \leadsto 36x² + 9x² - 2y² - 7y² - 2xy

 \leadsto 45x² - 9y² - 2xy

Now,

L.H.S = 45x² - 9y² - 2xy

R.H.S = 45x² - 9y² - 2xy

Therefore, L.H.S = R.H.S

Hence, Verified!

Answered by Anonymous
3

Step by step explanation:-

 \sf \implies \: 7 {y}^{2}  - 9 {x}^{2}   + 21xy - 36 {x}^{2}  - 2 {y}^{2}  \\  \\  \sf \implies \: 7 {y}^{2}  +  - 9 {x}^{2}  + 21xy +  - 36 {x}^{2}  +  - 2 {y}^{2}   \\  \\  \sf \implies \: 7  {y}^{2}  +  - 9 {x}^{2}  + 21xy +  - 36 {x}^{2}  +  - 2 {y}^{2}  \\  \\  \sf \implies \: ( - 9 {x}^{2}  +  - 36 {x}^{2} ) + (21xy) + (7 {y}^{2}  +  - 2 {y}^{2} ) \\  \\  \sf \implies \:  - 45 {x}^{2}  + 21xy + 5 {y}^{2}

Similar questions