Math, asked by hnpokaar, 6 hours ago

subtract the second polynomial from the first x³-8x + √5;-19x + √5 + 8x³​

Answers

Answered by MonoranjanDas
0

Step-by-step explanation:

sol {}^{n}

(x {}^{3}  - 8x +  \sqrt{5} ) - ( - 19x +  \sqrt{5  }  + 8x {}^{3} )

 =x {}^{3} - 8x +  \sqrt{5}   + 19x -  \sqrt{5}  - 8x {}^{3}

 =  - 7x {}^{3} + 11x

Answered by MathCracker
10

Question :-

subtract the second polynomial from the first x³-8x + √5;-19x + √5 + 8x³

Answer :-

  • -7x³ + 11x

Step by step explanation :-

Subtracting the second polynomial form the first.

\rm:\longmapsto{x {}^{3}  - 8x +  \sqrt{5 } - ( - 19x +  \sqrt{5}  + 8x {}^{3} )  }

on opening brackets,

\rm:\longmapsto{x {}^{3}  - 8x  \:  \cancel {+  \sqrt{5}  } + 19x  \:  \cancel{-   \sqrt{5} }- 8x {}^{3}  } \\  \\ \rm:\longmapsto{x {}^{3}  - 8x {}^{3}  - 8x + 19x } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf:\longmapsto \red{  - 7x {}^{3} + 11x } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Additional information :-

Types of polynomial

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Types & \bf General \: form \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf Monomial & \sf 3x {}^{2} \\ \\ \sf Binomial& \sf 2x + 7 \\ \\ \sf Trinomial & \sf 5x - 2y + 4z \end{array}} \\ \end{gathered}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

2x3 - 5x² +8x-5 by 2x² – 3x+5 divide first polynomial by second polynomial.

https://brainly.in/question/28656540

Similar questions