Math, asked by ahmadalansar7, 9 months ago

subtract the sum of 2 whole 3/7 and -5 whole 4/7 from the difference of 4/15 and -2/5​

Answers

Answered by Anonymous
283

 \huge \bf{ Answer}

\tt  \red{Sum \: of \: 2\dfrac{3}{7}  \: and \:  - 5  \dfrac{4}{7} }

 \implies \bf  \dfrac{17}{7}   + ( \dfrac{ - 39}{7} )

 \implies \bf  \dfrac{17}{7}  -  \dfrac{39}{7}

 \implies \bf \dfrac{17 - 39}{7}

 \implies \bf \dfrac{ - 22}{7}

\tt  \red{Difference \: of \: \dfrac{4}{15}  \: and \:  \dfrac{ - 2}{5} }

\implies \bf \dfrac{4}{15}  - ( \dfrac{ - 2}{5} )

\implies \bf \dfrac{4}{15}  +  \dfrac{2}{5}

\implies \bf \dfrac{4 +6 }{15}

\implies \bf \dfrac{10}{15}

Now, According to Question

\implies \bf  \blue{Difference - Sum = ?}

Substituting the values

 \implies \bf {\dfrac{10}{15}  -  (\dfrac{ - 22}{7} })

 \implies \bf \dfrac{10}{15}  +  \dfrac{22}{7}

 \implies \bf \dfrac{70 + 330}{105}

 \implies \bf \cancel \dfrac{400}{105}

 \implies \bf \dfrac{80}{21}

 \huge \bf {Some \ Important \ Identities}

 \bf  \pink {(a+b)^{0} = 1}

 \bf \pink {(a+b)^{1} = a + b}

 \bf \pink {(a+b)^{2} = a^{2} + 2ab + b^{2}}

 \bf \pink {(a-b)^{2} = a^{2} - 2ab + b^{2}}

 \bf \pink {a^{2} - b^{2} = (a+b)(a-b)}

 \bf \pink { {a}^{2}   +  {b}^{2}  = (a + b {)}^{2} - 2ab  }

\bf \pink { {a}^{2}     +  {b}^{2}  = (a  -  b {)}^{2}  + 2ab  }

\bf \pink {   {a}^{3}  +  {b}^{3} = (a + b)( {a}^{2}   - ab +  {b}^{2})  }

\bf \pink {   {a}^{3}   -   {b}^{3} = (a  -  b)( {a}^{2}    + ab +  {b}^{2})  }

 \bf \pink{(a + b + c  {)}^{2} =  {a}^{2}  +  {b}^{2}   +  {c}^{2}  + 2ab + 2bc + 2ca}

 \bf \pink{ {a}^{3} +  {b}^{3}   +  {c}^{3}  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2} - ab - bc - ca) }


Vamprixussa: Great answer !
BrainIyMSDhoni: Great :)
VishalSharma01: Awesome :)
Answered by Glorious31
67

Sum of \longrightarrow{\tt{ 2\dfrac{3}{7} and\: -5 \dfrac{4}{7}}} is :

\longrightarrow{\tt{ \dfrac{17}{7} and \: \dfrac{-39}{7}}}

\longrightarrow{\tt{ \dfrac{17 + (-39)}{7}}}

\boxed{\tt{\dfrac{-22}{7}}}

Difference of \longrightarrow{\tt{ \dfrac{4}{15} and \: \dfrac{-2}{5}}} is :

\longrightarrow{\tt{ \dfrac{4}{15} - \dfrac{-2}{5}}}

\longrightarrow{\tt{ LCM \implies 15}}

\longrightarrow{\tt{ \dfrac{4 - (-6)}{15}}}

\boxed{\tt{\dfrac{10}{15}}}

So , the difference of sum and difference of given problem :

\longrightarrow{\tt{ \dfrac{10}{15} - \dfrac{-22}{7}}}

\longrightarrow{\tt{ LCM \implies 105}}

\longrightarrow{\tt{ \dfrac{70 - (-330)}{105}}}

\boxed{\tt{\dfrac{400}{105}}}

This can be simplified into :

\large{\boxed{\tt{\dfrac{80}{21}}}}


BrainIyMSDhoni: Good :)
VishalSharma01: Nice :)
Vamprixussa: Awesome !
Similar questions