Math, asked by kathishoban, 11 months ago

Subtract the sum of (2m + 4n - 3p2) and (-m - n -p2) from the sum of(8m - 7n + 6p2) and (- 3m - 4n - p2) is
1) – 4m – 14n – 9p²
2) 4m - 14n + 9p2
3) - 4m + 14n + 9p2
4) – 4m + 14n - 9P²​

Answers

Answered by Sauron
64

Answer:

The answer is (4m - 14n + 9p²). [Option 2]

Step-by-step explanation:

Sum of (2m + 4n - 3p²) and (-m - n -p²)

\rm{=(2m + 4n -  {3p}^{2} ) +  (-m - n - {p}^{2})} \\ \rm{= \: 2m - m + 4n - n -  {3p}^{2} -  {p}^{2}} \: \\ \rm{= \: \green{m + 3n - 4 {p}^{2}}}

\rule{300}{1.5}

Sum of (8m - 7n + 6p²) and (- 3m - 4n - p²)

\rm{= \:(8m - 7n + 6 {p}^{2})  + (- 3m - 4n -  {p}^{2} )} \\ \rm{= \:8m - 3m - 7n - 4n + 6 {p}^{2} -  {p}^{2}} \\ \rm{= \:\blue{5m - 11n + 5 {p}^{2}}}

\rule{300}{1.5}

Difference between (5m - 11n + 5p²) and (m + 3n - 4p²)

\rm{= \: (5m - 11n + 5 {p}^{2} )  - (m + 3n - 4 {p}^{2} )} \\ \rm{= \:Change \: the \: Signs} \\ \rm{= \:(5m - 11n + 5 {p}^{2} )  - m  -  3n  +  4 {p}^{2}} \\ \rm{= \:5m - m - 11n - 3n + 5 {p}^{2}  + 4 {p}^{2}} \\ \rm{= \:\pink{4m - 14n + 9 {p}^{2}}}

\therefore The answer is (4m - 14n + 9p²). [Option 2]


mysticd: Use = symbol instead of implies
Sauron: Thanks for the suggestion ^_^ I edited it
Answered by Anonymous
44

\LARGE{\mathfrak{\underline{\underline{\red{Answer :-}}}}}

Case 1

Sum of (2m + 4n - 3p²) and (- m - n - p²)

{ \bf(2m  \: + \:  4n \:  -  \: 3 {p}^{2}) + (  \: - \:  m \:  - \:  n  \: - \:   {p}^{2}  }

\mathrm{\gray{\bf{By \: removing \: brackets}}}

\bf{2m \:  -  \: m \:  +  \: 4n \:  -n \:  -  \:   {3p}^{2} \:  -  \:  {p}^{2}}

\bf{\purple{ m  \:  +  \: 3n \:  - 4 {p}^{2}}}

\rule{200}{2}

✯ Case 2

Sum of (8m - 7n + 6p²) and (-3m - 4n -p²)

 \bf{8m \:  -  \: 7n \:  +  \: 6 {p}^{2} } \\  \\  \bf{ \mathrm { \gray{By \:  removing \: brackets}}} \\  \\  \bf {8m \:  - 3m \:  -  \: 7n - 4n \:  + 6 {p}^{2} } \\  \\     {\purple{\bf{5m \:  - 11n \:  + 5 {p}^{2} }}} \\  \\

\rule{200}{2}

✯ Case 3

Difference between (5m - 11 + 5p²) and (m + 3n - 4p²)

 \bf{(5m \:  -  \: 11 \:  +  \: 5 {p}^{2}) } \:  \:  -  \:  \: (m \:  +  \: 3n \:  -  \: 4 {p}^{2}) \\  \\

We know that when there is negative( - ) sign before bracket then the sign inside the bracket got changed.

\mathrm{\gray{\bf{By \: removing \: brackets}}}

 \bf{ 5m \:  -  \: m \:  -  \: 11n \:  -  \: 3n \:  +  \: 5 {p}^{2} \:  +  \: 4 {p}^{2} } \\  \\  \bf{ \purple{4m \:  - \:  14m \:  +  \: 9 {p}^{2} }}

\rule{200}{2}

Option (b) is correct

\huge{\pink{\underline{\boxed{\boxed{\red{\bf{ 4m \:  - \:  14m \:  +  \: 9 {p}^{2} }}}}}}}

{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}{\green{\star}}{\star}{\green{\star}}


mysticd: Check the answer 4m - 14n+9p²
Similar questions