Subtract the sum of ( x
² + 2y²
+ 7x
2y ) and ( x
² – 3xy
² ) from the sum of
( x
² – y² – xy ) and ( 3x
² – 2y
² + 7)
Answers
Answered by
1
Step: 1
Find the sum of the two equations
(x² + 2y² + 7x) + (x² – 3xy²)
=> x² + 2y² + 7x
+ x² + 0y² + 0x – 3xy²
= 2x² + 2y² + 7x – 3xy²
Step: 2
Find the sum of the next two equations
(x² – y² – xy) + (3x² – 2y² + 7)
=> x² – y² –xy
+ 3x² – 2y² + 0xy + 7
= 4x² – 3y² –xy + 7
Step: 3
Subtract the equation of step 1 from step 2
(4x² – 3y² – xy + 7) – (2x² + 2y² + 7x – 3xy²)
=> 4x² – 3y² – xy + 7 – 2x² – 2y² – 7x + 3xy²
(sign changes)
=> 4x² – 3y² – xy + 7
– 2x² – 2y² – 7x + 3xy²
= 2x² – 5y² – xy + 7 – 7x + 3xy²
= 2x² – 5y² + 3xy² – 7x – xy + 7 (rearranged)
>> 2x² – 5y² + 3xy² – 7x – xy + 7 is the answer
Similar questions