Suchna aap apne Vidyalay ki Sahitya Sabha ke Sachiv hai aapke Vidyalay Mein Antar Vidyalay bhashan Pratiyogita Ka aayojan Hona Hai vidyarthiyon Ko iske liye aamantrit karte hue Ek Suchna taiyar kijiye ( it should be written in proper format then and only u will be given brainliest)
Answers
Answer:
《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》
▪Given :-
For a Quadratic Polynomial
Sum of Zeros = 1
Product of Zeros = -30
___________________________
▪To Find :-
The Quadratic Polynomial.
___________________________
▪Key Point :-
If sum and product of zeros of any quadratic polynomial are s and p respectively,
Then,
The quadratic polynomial is given by :-
\bf {x}^{2} - s \: x + p x2 −sx+p
___________________________
▪Solution :-
Here,
Sum = s = 1
and
Product = p = -30
So,
Required Polynomial should be
\bf{x}^{2} - 1.x + (-30) x2 −1.x+ (−30)
i.e.
\bf {x}^{2} -x -30 x2 −x−30
___________________________
▪Verification :-
\begin{gathered} \sf {x}^{2} - x - 30 \\ \\ \sf {x}^{2} - 6x + 5x - 30 \\ \\ \sf x(x - 6) + 5(x - 6) \\ \\ \sf (x - 6)(x + 5)\end{gathered}x2−x−30x2−6x+5x−30x(x−6)+5(x−6)(x−6)(x+5)
So,
Zeros are 6 and -5
Sum = 6 + (-5) = 1 {VERIFIED}
Product = 6 × (-5) = -30 {VERIFIED}
___________________________
So, Required Polynomial is
\red{ \Large\bf {x}^{2} -x -30} x2 −x−30
\begin{gathered} \Large \color{Purple}\mathfrak{ \text{W}hich \: \: is \: \: the \: \: required }\\ \huge \color{navy} \mathfrak{ \text{ A}nswer.}\end{gathered} Which is the required Answer.