Math, asked by simpuri593, 2 months ago

● Sum 2: Calculate Amount & CI on ₹30500 for 1½years at 8% per annum

compounded half yearly, with formula.

● Sum 3: Calculate SI & CI on ₹18000 for 3 years at 9% per annum, with formula.

Also find the difference between Simple Interest and Compound Interest.
DO NOT SPAM​

Answers

Answered by SachinGupta01
18

Solution : 2

Note : When interest is compounded half yearly, then rate of interest would be halfed and time (n) will be doubled that is 2n.

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies Principal  \: (P) = Rs.  \: 30500

 \sf \implies Rate  \: of \:  interest = 8  \: \%  =  \dfrac{8}{2}  = 4  \: \%

\sf \implies Time = 1 \: \dfrac{1}{2} \: years= \dfrac{3}{2} \: years \: = \dfrac{3}{2} \times 2 = 3 \: years.

\bf \underline{ \underline{\maltese\:To  \: find } }

\sf \implies Amount  \: and \:  compound  \: interest = \:  ?

\bf \underline{ \underline{\maltese\:Solution} }

 \underline{\sf { \boxed{ { \sf \: Amount = Principal\: \bigg(\: 1 + \dfrac{Rate}{100} \: \bigg ) ^{Time} }}}}

\sf \implies {{ \sf \: Amount = 30500\: \bigg(\: 1 + \dfrac{4}{100} \: \bigg ) ^{3} }}

\sf \implies {{ \sf  30500\: \bigg(\: 1 + \dfrac{1}{25} \: \bigg ) ^{3} }}

\sf \implies {{ \sf  30500\: \bigg(\:\dfrac{25 + 1}{25} \: \bigg ) ^{3} }}

\sf \implies {{ \sf  30500\: \bigg(\: \dfrac{26}{25} \: \bigg ) ^{3} }}

\sf \implies  \sf   \cancel{30500} \times  \dfrac{17576}{ \cancel{15625} }

\sf \implies  \sf    \dfrac{244 \times 17576}{125}

\sf \implies  \sf    \dfrac{4288544}{125}  = 34308.352

 \sf  \underline{ \boxed{ \sf Therefore,  \: amount = Rs. \:34308.352  }}

 \bf \underline{Now},

 \sf Compound  \: interest = Amount - Principal

 \sf  \implies C.I  = 34308.352 - 30500 = Rs.  \: 3808.352

 \sf  \underline{ \boxed{ \sf Hence, Compound \:  interest = Rs.  \: 3808.352  }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 3

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies Principal  \: (P) = Rs.  \:18000

 \sf \implies Rate  \: of \:  interest = 9\: \%

\sf \implies Time =  3 \: years

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf  Difference \:  between \:  compound  \: interest \:  and \:  simple  \: Interest =  \: ?

\bf \underline{ \underline{\maltese\:Solution } }

 \sf Finding  \: the \:  simple \:  interest,

 \underline{\boxed{ \sf Simple \:  interest =  \dfrac{Principal \times  Rate \times  Time}{100} }}

 \sf  \implies Simple \:  interest =   \cancel{\dfrac{18000 \times  9 \times  3}{100} } = 4860

 \sf  \underline{Hence,  \: simple  \: interest = Rs.  \: 4860 }

 \sf Now,  \: finding  \: the \:  compound  \: interest,

 \underline{\sf { \boxed{ { \sf \: Amount = Principal\: \bigg(\: 1 + \dfrac{Rate}{100} \: \bigg ) ^{Time} }}}}

\sf \implies {{ \sf \: Amount = 18000\: \bigg(\: 1 + \dfrac{9}{100} \: \bigg ) ^{3} }}

\sf \implies {{ \sf \:  18000\: \bigg(\: \dfrac{100 + 9}{100} \: \bigg ) ^{3} }}

\sf \implies {{ \sf \:  18000\: \bigg(\: \dfrac{109}{100} \: \bigg ) ^{3} }}

\sf \implies {{ \sf \:   \cancel{18000} \times  \dfrac{1295029}{ \cancel{1000000} }}}

\sf \implies {{ \sf  \dfrac{9 \times 1295029}{ 500 }}}

\sf \implies {{ \sf  \dfrac{11655261}{ 500 }}} = 23310.522

 \sf  \boxed{ \sf Therefore,  \: amount = Rs. \:23310.522  }

 \sf Compound  \: interest = Amount - Principal

 \sf  \implies C.I  = 23310.522 - 18000 = Rs.  \: 5310.522

 \sf   \boxed{ \sf Hence, Compound \:  interest = Rs.  \: 5310.522  }

 \bf \underline{ Now},

 \sf Difference = Compound \:  interest - Simple  \: Interest

 \sf  \implies 5310.522 - 4860 = 450.522

 \sf  \underline{ \boxed{ \sf Therefore,  \: difference  \: between\: C.I  \: and  \:  S.I = Rs.  \: 450.522   }} \:

Similar questions