Math, asked by fizzafathima7757, 11 months ago

Sum and product of the Zeroes of a quadratic polynomial.
p(x) =ax²+bx-4 are 1/4 and _1 respectively .then find the values of a and b.​

Answers

Answered by sanketj
4

p(x) = ax² + bx - 4

 let \: \alpha \: and \: \beta \: be \: the \: roots \: of \: the \: \\</p><p>given \: equation

According to given condition

 \alpha  =  \frac{1}{4}  \: and \:  \beta  =  - 1 \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  (\frac{1}{4} )( - 1) =  \frac{ - 4}{a}  \\  \frac{1}{4}  =  \frac{4}{a}  \\ a = 16 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: ... \: (i)

 \alpha  +  \beta  =  \frac{ - b}{a}  \\  \frac{1}{4}  - 1 =  \frac{ - b}{16} \\  \frac{ - 3}{4}   =  \frac{ - b}{16}  \\  \frac{3}{4}  =  \frac{b}{16}  \\ 3 =  \frac{b}{4}  \\ b  = 12

Hence, values of a and b are 16 and 12 respectively.

Answered by varundwivedi099
1

Step-by-step explanation:

Given: p(x)= ax^2 + bx - 4..........(p)

 \alpha  +  \beta  =  \frac{1}{4}

 \alpha  \times  \beta  = 1

To Find : values of a and b

solutions :-

formula of quadratic equation:-

p(x) = a[x^2 - (sum of zeros)x + product of zeros]

Now:-

p(x) = a[x^2 - (1/4)x + 1]

p(x) = a[x^2 - 1/4x + 1]..........(q)

Now:- by comparing (p) and (q)

a = 1

b = -1/4

Similar questions