CBSE BOARD X, asked by M4l6, 5 hours ago

sum and product of zeros of a quadratic polynomial are 2 and √23 respectively then find that polynomial.​

Answers

Answered by SparklingBoy
217

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

For a Quadratic Polynomial

   

Sum of Zeros = 2

Product of Zeros = √23

___________________________

▪To Find :-

The Quadratic Polynomial.

___________________________

▪Key Concept :-

If sum and product of zeros of any quadratic polynomial are s and p respectively,

Then,

The quadratic polynomial is given by :-

 \bf  {x}^{2}  - s \: x + p

___________________________

▪Solution :-

Here,

Sum = s = 2

and

Product = p = √23

So,

Required Polynomial should be

  \bf{x}^{2}  - 2x +  \sqrt{23}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
149

Answer:

Given :-

  • Sum and product of zeroes of a quadratic polynomial are 2 and √23 respectively.

To Find :-

  • What is the polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}}\\

Solution :-

Given :

\bigstar \: \: \sf\bold{\purple{Sum\: of\: roots\: (\alpha + \beta) =\: 2}}

\bigstar\: \: \: \sf\bold{\purple{Product\: of\: roots\: (\alpha\beta) =\: \sqrt{23}}}

Hence, the required polynomial equation is :

\footnotesize\leadsto \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots) =\: 0}}

\small\longrightarrow \bf{ x^2 - (\alpha + \beta)x + (\alpha\beta) =\: 0}

\small\longrightarrow \sf x^2 - (2)x + (\sqrt{23}) =\: 0

\small\longrightarrow \sf x^2 - 2x + \sqrt{23} =\: 0

\small\longrightarrow \sf\bold{\red{x^2 - 2x + \sqrt{23} =\: 0}}

{\small{\bold{\underline{\therefore\: The\: required\: polynomial\: equation\: is\: x^2 - 2x + \sqrt{23}\: =\: 0\: .}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

Quadratic Equation with one variable :

✪ The general form of the equation is ax² + bx + c.

[ Note :- ● If a = 0, then the equation becomes to a linear equation. ]

● If b = 0, then the roots of the equation becomes equal but opposite in sign. ]

● If c = 0, then one of the roots is zero. ]

Nature of Roots :

- 4ac is the discriminant of the equation.

Then,

◆ If, - 4ac = 0, then the roots are real & equal.

◆ If, - 4ac > 0, then the roots are real & unequal

◆ If, - 4ac < 0, then the roots are imaginary & no real roots.

Similar questions