Sum based on trigonometry:
Prove that :
1+sinA/cosA=1+sinA+cosA/1+cosA-sinA
Answers
Answered by
2
Answer:
We have,
1+csosA−sinA
1+cosA+sinA
=
1+cosA−sinA
1+cosA+sinA
×
(1+cosA)+sinA
(1+cosA)+sinA
=
(1+cosA)
2
−sin
2
A
((1+cosA)+sinA)
2
=
1+cos
2
A+2cosA−1+cos
2
A
(1+cosA)
2
+sin
2
A+2(1+cosA)sinA
=
2cos
2
A+2cosA
1+cos
2
A+sin
2
A+2cosA+2sinA+2sinAcosA
=
2cos
2
A+2cosA
1+cos
2
A+sin
2
A+2cosA+2sinA+2sinAcosA
2cosA(1+cosA)
1+1+2cosA+2sinA+2sinAcosA
2cosA(1+cosA)
2+2cosA+2sinA+2sinAcosA
cosA(1+cosA)
1+cosA+sinA+sinAcosA
=
cosA(1+cosA)
1+sinA+cosA(1+sinA)
=
cosA(1+cosA)
(1+sinA)(1+cosA)
=
cosA
1+sinA
Hence proved.
Similar questions
English,
2 months ago
English,
2 months ago
English,
2 months ago
India Languages,
11 months ago
Chemistry,
11 months ago