sum equal 6 and product = - 924 find the two numbers which when added get the sun as 6and multiplied get the product as - 924
Answers
Answer:
The two numbers are and
Step-by-step explanation:
Given :
To find two numbers, whose sum is 6 & product is -924.
Solution :
Let the numbers be x & y,.
Then,
x + y = 6 ..(i)
&
xy = -924 ..(ii)
We know that,
(a + b)² = a² + 2ab + b²
&
(a - b)² = a² - 2ab + b²
By using these identities,..
⇒ x + y = 6
⇒ (x + y)² = (6)²
⇒ x² + 2xy + y² = 36
⇒ (x² + y²) + 2(xy) = 36
⇒ (x² + y²) + 2(-924) = 36
⇒ (x² + y²) - 1848 = 36
⇒ (x² + y²) = 36 + 1848
⇒ x² + y² = 1884 ..(iii)
_
⇒ (x - y)² = x² - 2xy + y²
⇒ (x - y)² = (x² + y²) - 2(xy)
⇒ (x - y)² = 1884 -2(-924)
⇒ (x - y)² = 1884 + 1848
⇒ (x - y)² = 3732
⇒ x - y = √3732 ..(iv)
By adding (i) & (iv),
We get,
⇒ (i) + (iv)
⇒ (x + y) + (x - y) = 6 + √3732
⇒ 2x = 6 + √3732 = 2 × (3 + √933)
⇒ x =
By subtracting (iv) from (i),
We get,
⇒ (i) - (iv)
⇒ (x + y) - (x - y) = 6 - √3732
⇒ 2y = 6 - √3732 = 2 × (3 - √933)
⇒ y =
___
(or)
Alternate Solution :
x + y = 6 ..(i)
&
xy = -924 ..(ii)
From (i),
⇒ x + y = 6
⇒ y = 6 - x ... (iii)
From (ii) & (iii)
⇒ xy = -924
⇒ x(6 - x) = -924
⇒ 6x - x² + 924 = 0
⇒ x² - 6x - 924 = 0
By using Quadratic formula,
where , a = 1 , b = -6 , c = -924
As, the equation is of the form, ax² + bx + c = 0
⇒
⇒
⇒
⇒ (As √3732 = √4 × √933 = 2√933)
⇒ (or)
⇒ (or)