Sum number 24 and 26.
Answers
Answer:
For sum 24
Step-by-step explanation:
Write expression in terms of sin and cos
LHS=(sinA/cosA)/(1-cosA/sinA)+(cosA/sinA)/(1-sinA/cosA)
=(sinA/cosA)(sinA-cosA/sinA)+(cosA/sinA)/(cosA-sinA/cosA)
=(sin^2A/cosA(sinA-cosA))+(cos^2A/sinA(cosA-sinA))
=(sin^2A/cosA(sinA-cosA))-(cos^2A/sinA(sinA-cosA))
(Taken -ve to make it easy to take LCM)
Now taking LCM,we hv to mulptiply sinA to left expression and cosA to the right expression to get the common denominator cosAsinA(sinA-cosA)
We get LHS=(sin^2A(sinA)-cos^2A(cosA))/cosAsinA(sinA-cosA)
=sin^3A-cos^3A/(sinA-cosA)cosAsinA
If u are in 10th std make sure to remember ur formulas of a^3-b^3,a^3+b^3,(a+b)^3 and (a-b)^3
a^3-b^3=(a-b)(a^2+b^2+ab)
We hv to apply this formula to the numerator.
We get (sinA-cosA)(sin^2A+cos^2A+sinAcosA)/cosAsinA(sinA-cosA)
(sinA-cosA) gets cancelled
LHS=(sin^2A+cos^2A+sinAcosA)/cosAsinA
=(1+sinAcosA)/cosAsinA
=(1/sinAcosA)+(sinAcosA/cosAsinA)
=cosecAsecA+1
I am sorry if the answer looks confusing.I am not familiar with how answers are written in code.
Question 24 - To prove:
Taking the LHS we get;
The RHS is in terms of secA and cosecA, so let's try to express the LHS in terms of secA and cosecA as well.
We can do that by using;
➝ tanA = sinA/cosA
➝ cotA = cosA/sinA
Taking LCM we get;
Using 1/(a - b) = -[1/(b - a)] we get;
[Same as a - b = -(b - a)]
Take 1/sinA - cosA as common.
Taking LCM we get;
Using a³ - b³ = (a - b)(a² + ab + b²) we get:
- Where a = sin³A & b = cos³A.
On cancelling (sinA - cosA) and using sin²A + cos²A = 1 we get:
Using the following we get:
- 1/cosA = secA
- 1/sinA = cosecA
- Cancelling sinAcosA and cosAsinA
LHS = RHS
Hence Proved.
------------------------------
Question 26 - To prove:
Taking the LHS we get;
Using 1 = cosec²θ - cot²θ we get:
Using a² - b² = (a + b)(a - b) we get:
Taking cotθ + cosecθ out as common from the numerator we get;
Canceling [1 - cosecθ + cotθ] in the numerator and denominator we get;
Using the below ratios we get;
- cotθ = cosθ/sinθ
- cosecθ = 1/sinθ
LHS = RHS
Hence proved.