Math, asked by akshitasharma11scibl, 9 months ago

Sum of 100 terms of an A. P. whose nth term is (2n+1)is
(a) 10100
(b) (101)
(c) (100)
(d) 10110​

Answers

Answered by BrainlyTornado
17

ANSWER:

  • Sum of 100 terms = 10200.

GIVEN:

  • Number of terms = 100.

  • nth term = 2n + 1.

TO FIND:

  • Sum of 100 terms.

EXPLANATION:

a = 2(1) + 1 [Value of n = 1 for first term]

a= 2 + 1

a = 3

\sf t_{100} = 2(100) + 1

\sf t_{100} = 200 + 1

\sf t_{100}= 201

\boxed{\bold{\large{S_n=\dfrac{n}{2}(a +l)}}}

n = 100

a = 3

l = 201

\sf S_{100}= \dfrac{100}{2}(3 + 201)

\sf S_{100} = 50(204)

\sf S_{100} = 10200

Sum of 100 terms = 10200.

VERIFICATION:

\boxed{\bold{\large{d = t_2 -t_1}}}

\sf t_2 = 2(2) + 1

\sf t_2 = 4 + 1

\sf t_2 = 5

\sf t_1= 3

\sf d = 5-3=2

\boxed{\bold{\large{S_n=\dfrac{n}{2}(2a +(n-1)d)}}}

n = 100

a = 3

d = 2

\sf S_{100}=\dfrac{100}{2}(2(3) +(100-1)2)

\sf S_{100}=50(6 +(99)2)

\sf S_{100}=50(6 +198)

\sf S_{100}=50(204)

\sf S_{100}=10200

HENCE VERIFIED.

Similar questions