Math, asked by jithinkmetr10, 7 months ago

sum of 10th term and 70th term of an ap is 806 and 20th term is 203 find its 60th term

Answers

Answered by biligiri
3

Answer:

a₁₀ + a₇₀ = 806

a + 9d + a + 69d = 806

=> 2a + 78d = 806

=> a + 39d = 403.........1

also given that a₂₀ = 203

=> a + 19d = 203.......….2

solving 1 and 2

20d = 200

=> d = 10 a = 13

therefore 60th term = a + 59d

13 + 59×10

=> 13 + 590

=> 603

Answered by Mihir1001
37

\huge{\underline{\bf\red{Questi {\mathbb{O}} n} :}}

 \sf Sum \: of \:  {10}^{th} \: and \:  {70}^{th}  \: terms \: of \: an \:  \\  \sf arithmetic \: progression \: is \: 806. \\  \sf  If \: its \:  {20}^{th}  \: term \: is \: 203 ,  find \: its \\  \sf  {60}^{th}  \: term.

\huge{\underline{\: \bf\green{Answ {\mathbb{E}} r}\ \: :}}

The answer is : \boxed{\blue{{\bf\green{\quad 603 \quad}}}}

\Large{\underline{\bf\pink{Giv {\mathbb{E}} n}\ :}}

  • sum of 10^{ \sf th} and 70^{ \sf th} term = 806

  • 20^{ \sf th} term = 203

\Large{\underline{\bf\pink{To \ Fi {\mathbb{N}} d}\ :}}

  • 60^{ \sf th} term

\huge{\underline{\bf\blue{Soluti {\mathbb{O}} n}\ :}}

Let us assume that :-

  • first term = a

  • common difference = d

  • nth term = \bold{ \sf{a_{n}}}

Now,

A/Q,

\begin{aligned} \sf  a_{10} + a_{70} & = 806 \\  \\  \implies \sf(a + 9d) + (a + 69d) & = 806 \\  \\  \implies \quad  \ \ \sf a + a + 9d + 69d& = 806 \\  \\  \implies \sf \qquad \qquad \quad 2a + 78d & = 806 \\  \\  \implies \sf \qquad \qquad \   \cancel{2}(a + 39d) & =  \cancel{2}(403) \\  \\  \implies \sf \qquad \qquad \quad \ \  \underline{\underline{a + 39d}} & =  \underline{\underline{403}} -  -  -  -  - (i) \ \bigstar & & & & \end{aligned}

And,

\begin{aligned} \sf a_{20}  & = 203 \\  \\  \implies  \sf \underline{ \underline{a + 19d}} & =  \underline{ \underline{203}} -  -  -  -  - (ii) \ \bigstar & & & & & & & & \end{aligned}

On solving equations ( i ) and ( ii ) , we get :--

  • first term , a = 13

  • common difference , d = 10

..

..

( finding 60th term )

..

..

 \large \mathbb{HENCE ,}

\begin{aligned} \sf a_{60} & = \sf a + 59d  \\  \\  & = (13) + 59(10)  \\  \\ & = 13 + 590 \\  \\  & = \boxed{603} & & & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

Formulae Used :

\sf a_n = a + (n - 1)d

\purple{\rule{7cm}{0.01cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions