Math, asked by hafsaalvia6515, 16 days ago

Sum of 25 terms of an arithmetic sequence is225 what is it 13th term

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

Sum of 25 terms of an arithmetic sequence is 225

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

So, on substituting the values, we get

\rm :\longmapsto\:225 = \dfrac{15}{2} \bigg(2a + (25 - 1)d\bigg)

\rm :\longmapsto\:15 = \dfrac{1}{2} \bigg(2a + 24d\bigg)

\rm :\longmapsto\:15 = \dfrac{2}{2} \bigg(a + 12d\bigg)

\rm \implies\:\boxed{\tt{ a + 12d = 15 \: }} -  -  - (1)

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\red{\rm :\longmapsto\:a_n\:=\:a\:+\:(n\:-\:1)\:d}

\red{\rm :\longmapsto\:a_{13}\:=\:a\:+\:(13\:-\:1)\:d}

\red{\rm :\longmapsto\:a_{13}\:=\:a\:+\:12\:d}

\red{\rm :\longmapsto\:a_{13}\:=\:15\:}

Similar questions