Math, asked by rohitpatel1356788, 1 year ago

sum of a digit of a two digit number is 5 when we interchange the digit it is found that the resulting new number is less than the original number by 27 what is the two digit number?​

Answers

Answered by mailvidit24
2

Answer:

41

Step-by-step explanation:

4+1=5

if we interchange the digits, we get:

14(41-27)

Answered by InfiniteSoul
1

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • Sum of 2 digits of 2 digit no. = 5
  • if we interchange the digits the reulting ni. is 27 less then the original no.

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀

  • Original no.

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

Let the original number be 10x + y

⠀⠀⠀⠀

Acc. to the 1st statement :-

⠀⠀⠀⠀

x + y = 5 ---- ( i )

⠀⠀⠀⠀

Interchange no. = 10y + x

⠀⠀⠀⠀

Acc. to the 2nd statement :-

⠀⠀

10x + y = 10y + x + 27

⠀⠀⠀⠀

10x - x - 10y + y = 27

⠀⠀⠀⠀

9x - 9y = 27

⠀⠀⠀⠀

9 ( x - y ) = 27

⠀⠀⠀⠀

x - y = 27 / 9

⠀⠀⠀⠀

x - y = 3 ---- ( ii )

⠀⠀⠀⠀

  • Adding eq ( i ) and ( ii )

⠀⠀⠀⠀

x + y + x - y = 5 + 3

⠀⠀⠀⠀

x + x = 5 + 3

⠀⠀⠀⠀

2x = 8

⠀⠀⠀⠀

x = 8 / 2

⠀⠀⠀⠀

x = 4

⠀⠀⠀⠀

  • Putting value of x in eq ( i )

⠀⠀⠀⠀

x + y = 5

⠀⠀⠀⠀

4 + y = 5

⠀⠀⠀⠀

y = 5 - 4

⠀⠀⠀⠀

y = 1

⠀⠀⠀⠀

  • Finding the original no.

⠀⠀⠀⠀

10x + y

⠀⠀⠀⠀

10 x 4 + 1

⠀⠀

40 + 1

⠀⠀⠀⠀

41

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • Original number = 41
Similar questions