Sum of, a2 – b + ab, b + c – bc and c – a2 – ac is
Answers
Given:
a² - b + ab
b + c - bc
c - a² - ac
What To Do:
We have to find the sum of the given expression.
Solution:
(a² - b + ab) + (b + c - bc) + (c - a² - ac)
Remove the brackets,
⇒ a² - b + ab + b + c - bc + c - a² - ac
Rearrange the like term,
⇒ a² - a² - b + b + c + c + ab - bc - ac
Solve the 1st like term,
⇒ 0 - b + b + c + c + ab - bc - ac
Solve the 2nd like term,
⇒ 0 + 0 + c + c + ab - bc - ac
Solve the 3rd like term,
⇒ 0 + 0 + 2c + ab - bc - ac
Also written as,
⇒ 2c + ab - bc - ac
∴ Hence, the sum is 2c + ab - bc - ac.
Given:
a² - b + ab
b + c - bc
c - a² - ac
What To Do:
We have to find the sum of the given expression.
Solution:
(a² - b + ab) + (b + c - bc) + (c - a² - ac)
Remove the brackets,
⇒ a² - b + ab + b + c - bc + c - a² - ac
Rearrange the like term,
⇒ a² - a² - b + b + c + c + ab - bc - ac
Solve the 1st like term,
⇒ 0 - b + b + c + c + ab - bc - ac
Solve the 2nd like term,
⇒ 0 + 0 + c + c + ab - bc - ac
Solve the 3rd like term,
⇒ 0 + 0 + 2c + ab - bc - ac
Also written as,
⇒ 2c + ab - bc - ac