Math, asked by JohnDoe28, 5 hours ago

Sum of all the solution(s) of the equation log10(x) + log10(x + 2) – log10(5x + 4) = 0 is-

Answers

Answered by mathdude500
4

 \large\underline{\sf{Solution-}}

Given Logarithmic equation is

\rm :\longmapsto\:log_{10}(x) + log_{10}(x + 2) - log_{10}(5x + 4) = 0

can be rewritten as

\rm :\longmapsto\:log_{10}(x) + log_{10}(x + 2) = log_{10}(5x + 4)

Let first define the domain of given equation :-

We know, logx is defined if x > 0

So,

\rm :\longmapsto\:x > 0 \:  \: and \:  \: x + 2 > 0 \:  \: and \:  \: 5x + 4 > 0

\rm :\longmapsto\:x > 0 \:  \: and \:  \: x  >  - 2 \:  \: and \:  \: x >  -  \dfrac{4}{5}

So,

\bf\implies \:x > 0

We know,

\boxed{\tt{ \:  log_{a}(x) +  log_{a}(y) =  log_{a}(xy) \: }}

So, using this identity, we get

\rm :\longmapsto\:log_{10}\bigg[x(x + 2)\bigg] = log_{10}(5x + 4)

We know,

\boxed{\tt{  log_{a}(x) =  log_{a}(y)\rm \implies\:x = y \: }}

So, using this identity, we get

\rm :\longmapsto\:x(x + 2) = 5x + 4

\rm :\longmapsto\: {x}^{2} + 2x= 5x + 4

\rm :\longmapsto\: {x}^{2} + 2x -  5x -  4 = 0

\rm :\longmapsto\: {x}^{2} - 3x -  4 = 0

\rm :\longmapsto\: {x}^{2} - 4x + x -  4 = 0

\rm :\longmapsto\:x(x - 4) + 1(x - 4) = 0

\rm :\longmapsto\:(x - 4)(x+ 1) = 0

\bf\implies \:x = 4 \:  \: or \:  \: x =  - 1 \{rejected \}

So, Sum of all the solutions = 4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{  log_{x}(x) = 1 \: }}

\boxed{\tt{  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y}  \: }}

\boxed{\tt{  log_{ {x}^{y} }( {w}^{z} ) =  \frac{z}{y} log_{x}(w)   \: }}

\boxed{\tt{  {a}^{ log_{a}(x) } = x \: }}

\boxed{\tt{  {a}^{y log_{a}(x) } =  {x}^{y}  \: }}

\boxed{\tt{  {e}^{logx} = x \: }}

\boxed{\tt{  {e}^{ylogx} =  {x}^{y}  \: }}

Similar questions